Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RhoH GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development

Abstract

RhoH is a hematopoietic-specific, GTPase-deficient member of the Rho GTPase family with unknown physiological function. Here we demonstrate that Rhoh−/− mice have impaired T cell receptor (TCR)–mediated thymocyte selection and maturation, resulting in T cell deficiency. RhoH deficiency resulted in defective CD3ζ phosphorylation, impaired translocation of the signaling molecule Zap70 to the immunological synapse and reduced activation of Zap70-mediated signaling in thymic and peripheral T cells. Proteomic analyses demonstrated that RhoH is a component of TCR signaling and is required for recruitment of Zap70 to the TCR through interaction with RhoH noncanonical immunoreceptor tyrosine-based activation motifs (ITAMs). In vivo reconstitution studies also demonstrated that RhoH function depends on phosphorylation of the RhoH ITAMs. These findings suggest that RhoH is a critical regulator of thymocyte development and TCR signaling by mediating recruitment and activation of Zap70.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Substantial blockade of intrathymic T cell development in Rhoh−/− mice.
Figure 2: Defective TCR-mediated thymic positive selection in Rhoh−/− mice.
Figure 3: Transgenic expression of RhoH restores Rhoh−/− intrathymic development and T cell function.
Figure 4: RhoH is tyrosine-phosphorylated and interacts with Zap70.
Figure 5: Conserved tyrosine-phosphorylated sequence motifs in RhoH mediate the interaction with Zap70 and RhoH function in thymocyte development.
Figure 6: Rhoh−/− thymocytes have impaired translocation of Zap70 to the plasma membrane and the immunological synapse and reduced phosphorylation of Zap70, CD3ζ and p42-p44.

Similar content being viewed by others

References

  1. Rothenberg, E.V. & Taghon, T. Molecular genetics of T cell development. Annu. Rev. Immunol. 23, 601–649 (2005).

    Article  CAS  Google Scholar 

  2. Mombaerts, P. et al. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature 360, 225–231 (1992).

    Article  CAS  Google Scholar 

  3. Fehling, H.J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδ T cells. Nature 375, 795–798 (1995).

    Article  CAS  Google Scholar 

  4. Robey, E. & Fowlkes, B.J. Selective events in T cell development. Annu. Rev. Immunol. 12, 675–705 (1994).

    Article  CAS  Google Scholar 

  5. Cantrell, D.A. GTPases and T cell activation. Immunol. Rev. 192, 122–130 (2003).

    Article  CAS  Google Scholar 

  6. Dallery, E. et al. TTF, a gene encoding a novel small G protein, fuses to the lymphoma- associated LAZ3 gene by t(3;4) chromosomal translocation. Oncogene 10, 2171–2178 (1995).

    CAS  PubMed  Google Scholar 

  7. Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001).

    Article  CAS  Google Scholar 

  8. Li, X. et al. The hematopoiesis-specific GTP-binding protein RhoH is GTPase deficient and modulates activities of other Rho GTPases by an inhibitory function. Mol. Cell. Biol. 22, 1158–1171 (2002).

    Article  CAS  Google Scholar 

  9. Gu, Y., Jasti, A.C., Jansen, M. & Siefring, J.E. RhoH, a hematopoietic-specific Rho GTPase, regulates proliferation, survival, migration, and engraftment of hematopoietic progenitor cells. Blood 105, 1467–1475 (2005).

    Article  CAS  Google Scholar 

  10. Cherry, L.K., Li, X., Schwab, P., Lim, B. & Klickstein, L.B. RhoH is required to maintain the integrin LFA-1 in a nonadhesive state on lymphocytes. Nat. Immunol. 5, 961–967 (2004).

    Article  CAS  Google Scholar 

  11. Lahousse, S. et al. Structural features of hematopoiesis-specific RhoH/ARHH gene: high diversity of 5′-UTR in different hematopoietic lineages suggests a complex post-transcriptional regulation. Gene 343, 55–68 (2004).

    Article  CAS  Google Scholar 

  12. Littman, D.R., Davis, C.B., Killeen, N. & Xu, H. Signal transduction during T cell development. Adv. Exp. Med. Biol. 365, 63–71 (1994).

    Article  CAS  Google Scholar 

  13. Gauen, L.K. et al. Interactions of p59fyn and Zap70 with T-cell receptor activation motifs: defining the nature of a signalling motif. Mol. Cell. Biol. 14, 3729–3741 (1994).

    Article  CAS  Google Scholar 

  14. Kane, L.P., Lin, J. & Weiss, A. Signal transduction by the TCR for antigen. Curr. Opin. Immunol. 12, 242–249 (2000).

    Article  CAS  Google Scholar 

  15. Rincon, M. MAP-kinase signaling pathways in T cells. Curr. Opin. Immunol. 13, 339–345 (2001).

    Article  CAS  Google Scholar 

  16. Negishi, I. et al. Essential role for Zap70 in both positive and negative selection of thymocytes. Nature 376, 435–438 (1995).

    Article  CAS  Google Scholar 

  17. Elder, M.E. et al. Human severe combined immunodeficiency due to a defect in Zap70, a T cell tyrosine kinase. Science 264, 1596–1599 (1994).

    Article  CAS  Google Scholar 

  18. Arpaia, E., Shahar, M., Dadi, H., Cohen, A. & Roifman, C.M. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking Zap70 kinase. Cell 76, 947–958 (1994).

    Article  CAS  Google Scholar 

  19. Boncristiano, M. et al. Defective recruitment and activation of Zap70 in common variable immunodeficiency patients with T cell defects. Eur. J. Immunol. 30, 2632–2638 (2000).

    Article  CAS  Google Scholar 

  20. Shortman, K. Cellular aspects of early T-cell development. Curr. Opin. Immunol. 4, 140–146 (1992).

    Article  CAS  Google Scholar 

  21. Godfrey, D.I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3–CD4-CD8- triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252 (1993).

    CAS  PubMed  Google Scholar 

  22. Fowlkes, B.J., Edison, L., Mathieson, B.J. & Chused, T.M. Early T lymphocytes. Differentiation in vivo of adult intrathymic precursor cells. J. Exp. Med. 162, 802–822 (1985).

    Article  CAS  Google Scholar 

  23. Punt, J.A., Osborne, B.A., Takahama, Y., Sharrow, S.O. & Singer, A. Negative selection of CD4+CD8+ thymocytes by T cell receptor-induced apoptosis requires a costimulatory signal that can be provided by CD28. J. Exp. Med. 179, 709–713 (1994).

    Article  CAS  Google Scholar 

  24. Yamashita, I., Nagata, T., Tada, T. & Nakayama, T. CD69 cell surface expression identifies developing thymocytes which audition for T cell antigen receptor-mediated positive selection. Int. Immunol. 5, 1139–1150 (1993).

    Article  CAS  Google Scholar 

  25. Swat, W., Dessing, M., von Boehmer, H. & Kisielow, P. CD69 expression during selection and maturation of CD4+8+ thymocytes. Eur. J. Immunol. 23, 739–746 (1993).

    Article  CAS  Google Scholar 

  26. Pircher, H. et al. Molecular analysis of the antigen receptor of virus-specific cytotoxic T cells and identification of a new Vα family. Eur. J. Immunol. 17, 1843–1846 (1987).

    Article  CAS  Google Scholar 

  27. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  Google Scholar 

  28. Sloan-Lancaster, J., Shaw, A.S., Rothbard, J.B. & Allen, P.M. Partial T cell signaling: altered phospho-ζ and lack of Zap70 recruitment in APL-induced T cell anergy. Cell 79, 913–922 (1994).

    Article  CAS  Google Scholar 

  29. van Oers, N.S., Killeen, N. & Weiss, A. Zap70 is constitutively associated with tyrosine-phosphorylated TCRζ in murine thymocytes and lymph node T cells. Immunity 1, 675–685 (1994).

    Article  CAS  Google Scholar 

  30. Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

    Article  CAS  Google Scholar 

  31. Cambier, J.C. Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). J. Immunol. 155, 3281–3285 (1995).

    CAS  PubMed  Google Scholar 

  32. Waksman, G., Kumaran, S. & Lubman, O. SH2 domains: role, structure and implications for molecular medicine. Expert Rev. Mol. Med. 6, 1–18 (2004).

    Article  Google Scholar 

  33. Lee, K.H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002).

    Article  CAS  Google Scholar 

  34. Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6, 1253–1262 (2005).

    Article  CAS  Google Scholar 

  35. Pelosi, M. et al. Tyrosine 319 in the interdomain B of Zap70 is a binding site for the Src homology 2 domain of Lck. J. Biol. Chem. 274, 14229–14237 (1999).

    Article  CAS  Google Scholar 

  36. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R.P. & Samelson, L.E. LAT: the Zap70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92 (1998).

    Article  CAS  Google Scholar 

  37. Li, B. et al. Role of the guanosine triphosphatase Rac2 in T helper 1 cell differentiation. Science 288, 2219–2222 (2000).

    Article  CAS  Google Scholar 

  38. Gu, Y. et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 302, 445–449 (2003).

    Article  CAS  Google Scholar 

  39. Walmsley, M.J. et al. Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science 302, 459–462 (2003).

    Article  CAS  Google Scholar 

  40. Azzam, H.S. et al. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J. Exp. Med. 188, 2301–2311 (1998).

    Article  CAS  Google Scholar 

  41. Molina, T.J. et al. Profound block in thymocyte development in mice lacking p56lck. Nature 357, 161–164 (1992).

    Article  CAS  Google Scholar 

  42. Fujikawa, K. et al. Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells. J. Exp. Med. 198, 1595–1608 (2003).

    Article  CAS  Google Scholar 

  43. Kersh, E.N., Shaw, A.S. & Allen, P.M. Fidelity of T cell activation through multistep T cell receptor ζ phosphorylation. Science 281, 572–575 (1998).

    Article  CAS  Google Scholar 

  44. Chan, A.C. & Shaw, A.S. Regulation of antigen receptor signal transduction by protein tyrosine kinases. Curr. Opin. Immunol. 8, 394–401 (1996).

    Article  CAS  Google Scholar 

  45. Nusser, N. et al. Serine phosphorylation differentially affects RhoA binding to effectors: implications to NGF-induced neurite outgrowth. Cell. Signal. 18, 704–714 (2006).

    Article  CAS  Google Scholar 

  46. Filippi, M.D. et al. Localization of Rac2 via the C terminus and aspartic acid 150 specifies superoxide generation, actin polarity and chemotaxis in neutrophils. Nat. Immunol. 5, 744–751 (2004).

    Article  CAS  Google Scholar 

  47. Henning, S.W., Galandrini, R., Hall, A. & Cantrell, D.A. The GTPase Rho has a critical regulatory role in thymus development. EMBO J. 16, 2397–2407 (1997).

    Article  CAS  Google Scholar 

  48. Delaguillaumie, A., Lagaudriere-Gesbert, C., Popoff, M.R. & Conjeaud, H. Rho GTPases link cytoskeletal rearrangements and activation processes induced via the tetraspanin CD82 in T lymphocytes. J. Cell Sci. 115, 433–443 (2002).

    CAS  PubMed  Google Scholar 

  49. Hanenberg, H. et al. Optimization of fibronectin-assisted retroviral gene transfer into human CD34+ hematopoietic cells. Hum. Gene Ther. 8, 2193–2206 (1997).

    Article  CAS  Google Scholar 

  50. Wahlers, A. et al. Influence of multiplicity of infection and protein stability on retroviral vector-mediated gene expression in hematopoietic cells. Gene Ther. 8, 477–486 (2001).

    Article  CAS  Google Scholar 

  51. Wakabayashi, Y. et al. Bcl11b is required for differentiation and survival of αβ T lymphocytes. Nat. Immunol. 4, 533–539 (2003).

    Article  CAS  Google Scholar 

  52. Movassagh, M. et al. Retrovirus-mediated gene transfer into T cells: 95% transduction efficiency without further in vitro selection. Hum. Gene Ther. 11, 1189–1200 (2000).

    Article  CAS  Google Scholar 

  53. Kumaraguru, U., Rouse, R.J., Nair, S.K., Bruce, B.D. & Rouse, B.T. Involvement of an ATP-dependent peptide chaperone in cross-presentation after DNA immunization. J. Immunol. 165, 750–759 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Schumann and Y. Yuan (Genome Research Institute, University of Cincinnati, Cincinnati, Ohio) for assistance with mass spectrometry analysis; A.S. Shaw (Washington University School of Medicine, St. Louis. Missouri) for the pGEM3Z-Zap70, pGEM3Z-Zap70ΔN-SH2 and pGEM3Z-Zap70ΔC-SH2 constructs; C.T. Baldari (University of Siena, Siena, Italy) for the constitutively active Lck construct; P. Marrack (National Jewish Medical and Research Center, Denver, Colorado) for breeding pairs of p14 lymphocytic choriomeningitis virus TCR–transgenic mice; S. Li, J. Bailey and V. Summer (Cincinnati Children's Hospital, Cincinnati, Ohio) for technical assistance; and Y. Zheng for discussions and critical comments on the manuscript. Supported by the National Cancer Institute (KO1 CA107110 to Y.G.) and the US National Institutes of Health (RO1 DK62757 to D.A.W. and RO1 CA113969).

Author information

Authors and Affiliations

Authors

Contributions

Y.G. designed and did experiments and wrote the draft of the paper; H.-D.C. did experiments; J.E.S. and A.C.J. assisted in experiments; D.A.H. provided advice and directed some experiments; and D.A.W. provided oversight for all experiments, designed experiments and edited the draft paper.

Corresponding authors

Correspondence to Yi Gu or David A Williams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Gene-targeted deletion of the murine Rhoh allele. (PDF 756 kb)

Supplementary Fig. 2

Viability and proliferation of WT and Rhoh−/− thymocytes. (PDF 337 kb)

Supplementary Fig. 3

Thymic cellularity and distribution of CD4+CD8+ thymocyte subsets in p14tg/+ Rhoh−/− mice. (PDF 163 kb)

Supplementary Fig. 4

Impaired phosophorylation and recruitment of Zap70 to the immunological synapse in Rhoh−/− peripheral T cells. (PDF 968 kb)

Supplementary Table 1

T and B lymphocyte populations in Rhoh−/− mice. (PDF 84 kb)

Supplementary Table 2

Engraftment and T cell reconstitution of the RhoH-transduced Rhoh−/− BM cells in Rag2−/− recipient mice. (PDF 87 kb)

Supplementary Methods (PDF 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Y., Chae, HD., Siefring, J. et al. RhoH GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development. Nat Immunol 7, 1182–1190 (2006). https://doi.org/10.1038/ni1396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1396

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing