Inhibition of transcription factor NF-κB in the central nervous system ameliorates autoimmune encephalomyelitis in mice

Article metrics


Activation of transcription factor NF-κB in the central nervous system (CNS) has been linked to autoimmune demyelinating disease; however, it remains unclear whether its function is protective or pathogenic. Here we show that CNS-restricted ablation of 'upstream' NF-κB activators NEMO or IKK2 but not IKK1 ameliorated disease pathology in a mouse model of multiple sclerosis, suggesting that 'canonical' NF-κB activation in cells of the CNS has a mainly pathogenic function in autoimmune demyelinating disease. NF-κB inhibition prevented the expression of proinflammatory cytokines, chemokines and the adhesion molecule VCAM-1 from CNS-resident cells. Thus, NF-κB-dependent gene expression in non–microglial cells of the CNS provides a permissive proinflammatory milieu that is critical for CNS inflammation and tissue damage in autoimmune demyelinating disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: CNS-restricted ablation of NEMO and IKK2 but not of IKK1 ameliorates EAE.
Figure 2: Impaired infiltration of inflammatory cells into the CNS of NEMOCNS-KO mice.
Figure 3: Ablation of NEMO in the CNS inhibits the expression of proinflammatory mediators during EAE.
Figure 4: Impaired VCAM-1 induction in astrocytes in the CNS of NEMOCNS-KO mice with EAE at 14 d after immunization with MOG(35–55).
Figure 5: Primary astrocytes but not microglia from NEMOCNS-KO mice show impaired NF-κB activation and proinflammatory gene expression.


  1. 1

    Steinman, L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85, 299–302 (1996).

  2. 2

    Steinman, L. Multiple sclerosis: a two-stage disease. Nat. Immunol. 2, 762–764 (2001).

  3. 3

    Hafler, D.A. Multiple sclerosis. J. Clin. Invest. 113, 788–794 (2004).

  4. 4

    Hemmer, B., Archelos, J.J. & Hartung, H.P. New concepts in the immunopathogenesis of multiple sclerosis. Nat. Rev. Neurosci. 3, 291–301 (2002).

  5. 5

    Gerard, C. & Rollins, B.J. Chemokines and disease. Nat. Immunol. 2, 108–115 (2001).

  6. 6

    Huang, D. et al. Chemokines and chemokine receptors in inflammation of the nervous system: manifold roles and exquisite regulation. Immunol. Rev. 177, 52–67 (2000).

  7. 7

    Fife, B.T., Huffnagle, G.B., Kuziel, W.A. & Karpus, W.J. CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J. Exp. Med. 192, 899–905 (2000).

  8. 8

    Izikson, L., Klein, R.S., Charo, I.F., Weiner, H.L. & Luster, A.D. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J. Exp. Med. 192, 1075–1080 (2000).

  9. 9

    Ransohoff, R.M. The chemokine system in neuroinflammation: an update. J. Infect. Dis. 186, S152–S156 (2002).

  10. 10

    Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8, 500–508 (2002).

  11. 11

    Ibrahim, S.M. et al. Gene expression profiling of the nervous system in murine experimental autoimmune encephalomyelitis. Brain 124, 1927–1938 (2001).

  12. 12

    Heppner, F.L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146–152 (2005).

  13. 13

    Greter, M. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11, 328–334 (2005).

  14. 14

    McMahon, E.J., Bailey, S.L., Castenada, C.V., Waldner, H. & Miller, S.D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med. 11, 335–339 (2005).

  15. 15

    De Keyser, J., Zeinstra, E. & Frohman, E. Are astrocytes central players in the pathophysiology of multiple sclerosis? Arch. Neurol. 60, 132–136 (2003).

  16. 16

    Ridet, J.L., Malhotra, S.K., Privat, A. & Gage, F.H. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20, 570–577 (1997).

  17. 17

    Volterra, A. & Meldolesi, J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6, 626–640 (2005).

  18. 18

    Mattson, M.P. & Camandola, S. NF-κB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest. 107, 247–254 (2001).

  19. 19

    Hilliard, B., Samoilova, E.B., Liu, T.S., Rostami, A. & Chen, Y. Experimental autoimmune encephalomyelitis in NF-κB-deficient mice:roles of NF-κB in the activation and differentiation of autoreactive T cells. J. Immunol. 163, 2937–2943 (1999).

  20. 20

    Hilliard, B.A. et al. Critical roles of c-Rel in autoimmune inflammation and helper T cell differentiation. J. Clin. Invest. 110, 843–850 (2002).

  21. 21

    Dasgupta, S. et al. Antineuroinflammatory effect of NF-κB essential modifier-binding domain peptides in the adoptive transfer model of experimental allergic encephalomyelitis. J. Immunol. 173, 1344–1354 (2004).

  22. 22

    Karin, M. & Lin, A. NF-κB at the crossroads of life and death. Nat. Immunol. 3, 221–227 (2002).

  23. 23

    Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109, S81–S96 (2002).

  24. 24

    Lawrence, T., Bebien, M., Liu, G.Y., Nizet, V. & Karin, M. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 434, 1138–1143 (2005).

  25. 25

    Pasparakis, M. et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417, 861–866 (2002).

  26. 26

    Schmidt-Supprian, M. et al. NEMO/IKK-γ-deficient mice model incontinentia pigmenti. Mol. Cell 5, 981–992 (2000).

  27. 27

    Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23, 99–103 (1999).

  28. 28

    Graus-Porta, D. β1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31, 367–379 (2001).

  29. 29

    Iademarco, M.F., McQuillan, J.J., Rosen, G.D. & Dean, D.C. Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). J. Biol. Chem. 267, 16323–16329 (1992).

  30. 30

    Osborn, L. et al. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59, 1203–1211 (1989).

  31. 31

    Carlos, T.M. et al. Vascular cell adhesion molecule-1 mediates lymphocyte adherence to cytokine-activated cultured human endothelial cells. Blood 76, 965–970 (1990).

  32. 32

    Rosenman, S.J., Shrikant, P., Dubb, L., Benveniste, E.N. & Ransohoff, R.M. Cytokine-induced expression of vascular cell adhesion molecule-1 (VCAM-1) by astrocytes and astrocytoma cell lines. J. Immunol. 154, 1888–1899 (1995).

  33. 33

    Engelhardt, B. et al. The development of experimental autoimmune encephalomyelitis in the mouse requires α4-integrin but not α4β7-integrin. J. Clin. Invest. 102, 2096–2105 (1998).

  34. 34

    Gimenez, M.A., Sim, J.E. & Russell, J.H. TNFR1-dependent VCAM-1 expression by astrocytes exposes the CNS to destructive inflammation. J. Neuroimmunol. 151, 116–125 (2004).

  35. 35

    Priller, J. et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat. Med. 7, 1356–1361 (2001).

  36. 36

    Perry, V.H. & Gordon, S. Macrophages and microglia in the nervous system. Trends Neurosci. 11, 273–277 (1988).

  37. 37

    Hanisch, U.K. Microglia as a source and target of cytokines. Glia 40, 140–155 (2002).

  38. 38

    Bechmann, I. et al. Astrocyte-induced T cell elimination is CD95 ligand dependent. J. Neuroimmunol. 132, 60–65 (2002).

  39. 39

    Kwon, D., Cheong, J.H., Lee, J.C., Kwon, J.H. & Kim, W.K. Lipopolysaccharides-activated human astroglioma cells induce apoptotic death of T-lymphocytes via c-Jun N-terminal kinases-dependent up-regulation of TRAIL. Neurosci. Res. 54, 338–343 (2006).

  40. 40

    Brambilla, R. et al. Inhibition of astroglial nuclear factor κB reduces inflammation and improves functional recovery after spinal cord injury. J. Exp. Med. 202, 145–156 (2005).

  41. 41

    Bonetti, B. et al. Activation of NF-κB and c-jun transcription factors in multiple sclerosis lesions. Implications for oligodendrocyte pathology. Am. J. Pathol. 155, 1433–1438 (1999).

  42. 42

    Kontgen, F., Suss, G., Stewart, C., Steinmetz, M. & Bluethmann, H. Targeted disruption of the MHC class II Aa gene in C57BL/6 mice. Int. Immunol. 5, 957–964 (1993).

  43. 43

    Prinz, M. et al. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J. Clin. Invest. 116, 456–464 (2006).

  44. 44

    McCarthy, K.D. & de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902 (1980).

  45. 45

    Prinz, M. & Hanisch, U.K. Murine microglial cells produce and respond to interleukin-18. J. Neurochem. 72, 2215–2218 (1999).

Download references


We thank W. Brück for scientific discussions; R. Klein for Nes-Cre mice; and O. Kowatsch and S. Zischkau for technical assistance. Supported by the European Molecular Biology Laboratory, European Union (QLG1-CT-1999-00202, LSHG-CT-2005-005203 and MRTN-CT-2004-005632 to M.P.), Gemeinnützige Hertie-Stiftung (M.R.P. and M.P.), Deutsche Forschungsgemeinschaft and Deutsche Forschungsgemeinschaft Research Center for Molecular Physiology of the Brain (M.R.P.), Gertrud-Reemtsma-Stiftung (H.S.) and a Marie Curie Fellowship (FP6-EIF-LIF-2002-Mobility 5 to G.v.L.).

Author information

G.v.L. in collaboration with R.D.L., H.S. and A.M. did all the experiments; M.H., M.S.-S. and M.P. generated the loxP-flanked IKK mouse lines; H.S., A.M., H.L. and M.R.P. did the immunohistopathological analysis; G.v.L., M.R.P. and M.P. wrote the paper; and M.P. was responsible for planning and supervising the project.

Note: Supplementary information is available on the Nature Immunology website.

Correspondence to Manolis Pasparakis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Tissue specificity of NEMO inactivation. (PDF 1080 kb)

Supplementary Fig. 2

Maximal clinical scores of all individual NEMOCNS-KO, IKK2CNS-KO and IKK1CNS-KO mice and their respective wild-type control mice during the course of the disease as shown in Fig. 1 b-d. (PDF 441 kb)

Supplementary Fig. 3

No clinical differences between Nes-Cre transgenic mice (n=9) and transgene negative (WT) littermates (n=9) after EAE induction (PDF 425 kb)

Supplementary Fig. 4

Histological profiles of spinal cords from wild-type, NEMOCNS-KO, IKK2CNS-KO and IKK1CNS-KO mice 25 days after EAE induction. (PDF 2891 kb)

Supplementary Fig. 5

Perivascular and parenchymal distribution of CD3-positive T cells in the CNS of MOG-immunized wild-type (n=6) and NEMOCNS-KO (n=6) mice. (PDF 383 kb)

Supplementary Fig. 6

Deletion of NEMO in the CNS does not affect the peripheral T cell response of mice to MOG peptide. (PDF 432 kb)

Supplementary Fig. 7

Impaired NF-κB activation in primary astrocytes, but normal NF-κB activation in primary microglial cells from NEMOCNS-KO mice. (PDF 758 kb)

Supplementary Fig. 8

IFN-γ-induced expression of C2ta (a) and IL-1β-induced expression of Tgfb1 (b) in primary astrocytes from NEMOCNS-KO (KO) or wild-type (WT) mice. (PDF 422 kb)

Supplementary Table 1

Primer-sequences used for quantitative real-time PCR. (PDF 38 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Loo, G., De Lorenzi, R., Schmidt, H. et al. Inhibition of transcription factor NF-κB in the central nervous system ameliorates autoimmune encephalomyelitis in mice. Nat Immunol 7, 954–961 (2006) doi:10.1038/ni1372

Download citation

Further reading