Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interleukin 15–dependent crosstalk between conventional and plasmacytoid dendritic cells is essential for CpG-induced immune activation

Abstract

The function of interleukin 15 (IL-15) in unmethylated CpG oligodeoxynucleotide (CpG)–induced immune responses remains unknown. Here, in response to CpG, both wild-type and natural killer cell–depleted mice produced IL-12 and became resistant to a lethal dose of Listeria monocytogenes. In contrast, CpG-treated IL-15-deficient mice produced little IL-12 and succumbed to L. monocytogenes. CpG-stimulated conventional dendritic cells (cDCs) were the main producers of both IL-15 and IL-12, but cDCs did not produce IL-12 in the absence of plasmacytoid DCs (pDCs). The cDC-derived IL-15 induced CD40 expression by cDCs. Interaction between CD40 on cDCs and CD40 ligand on pDCs led to IL-12 production by cDCs. Thus, IL-15-dependent crosstalk between cDCs and pDCs is essential for CpG-induced immune activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired IL-12 and IFN-γ production in CpG-injected IL-15-deficient mice.
Figure 2: Essential function of DCs in CpG-induced IL-12 and IFN-γ production.
Figure 3: DC-derived IL-15 is critical for CpG-induced immune activation.
Figure 4: CpG-induced immune activation requires pDCs.
Figure 5: Mechanism of crosstalk between cDCs and pDCs.
Figure 6: Type I interferon is dispensable for CpG-induced immune activation.

Similar content being viewed by others

References

  1. Krieg, A.M. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709–760 (2002).

    Article  CAS  Google Scholar 

  2. Wagner, H. Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity. Curr. Opin. Microbiol. 5, 62–69 (2002).

    Article  CAS  Google Scholar 

  3. Klinman, D.M. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol. 4, 249–258 (2004).

    Article  CAS  Google Scholar 

  4. Wesche, H., Henzel, W.J., Shillinglaw, W., Li, S. & Cao, Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837–847 (1997).

    Article  CAS  Google Scholar 

  5. Cao, Z., Xiong, J., Takeuchi, M., Kurama, T. & Goeddel, D.V. TRAF6 is a signal transducer for interleukin-1. Nature 383, 443–446 (1996).

    Article  CAS  Google Scholar 

  6. Shirakabe, K. et al. TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase. J. Biol. Chem. 272, 8141–8144 (1997).

    Article  CAS  Google Scholar 

  7. DiDonato, J.A., Hayakawa, M., Rothwarf, D.M., Zandi, E. & Karin, M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388, 548–554 (1997).

    Article  CAS  Google Scholar 

  8. Waldmann, T.A. & Tagaya, Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu. Rev. Immunol. 17, 19–49 (1999).

    Article  CAS  Google Scholar 

  9. Ogasawara, K. et al. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 391, 700–703 (1998).

    Article  CAS  Google Scholar 

  10. Ohteki, T. et al. The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-α/β+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T cells. J. Exp. Med. 187, 967–972 (1998).

    Article  CAS  Google Scholar 

  11. Kennedy, M.K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  CAS  Google Scholar 

  12. Lodolce, J.P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    Article  CAS  Google Scholar 

  13. Ohteki, T., Suzue, K., Maki, C., Ota, T. & Koyasu, S. Critical role of IL-15-IL-15R for antigen-presenting cell functions in the innate immune response. Nat. Immunol. 2, 1138–1143 (2001).

    Article  CAS  Google Scholar 

  14. Krieg, A.M., Love-Homan, L., Yi, A.-K. & Harty, J.T. CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J. Immunol. 161, 2428–2434 (1998).

    CAS  PubMed  Google Scholar 

  15. Elkins, K.L., Rhinehart-Jones, T.R., Stibitz, S., Conover, J.S. & Klinman, D.M. Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria. J. Immunol. 162, 2291–2298 (1999).

    CAS  PubMed  Google Scholar 

  16. Hemmi, H. et al. A toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  Google Scholar 

  17. Takeshita, F. et al. Role of toll-like receptor 9 in CpG DNA-induced activation of human cells. J. Immunol. 167, 3555–3558 (2001).

    Article  CAS  Google Scholar 

  18. Bauer, S. et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. USA 98, 9237–9242 (2001).

    Article  CAS  Google Scholar 

  19. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  Google Scholar 

  20. Colonna, M., Trinchieri, G. & Liu, Y.-J. Plasmacytoid dendritic cells in immunity. Nat. Immunol. 5, 1219–1226 (2004).

    Article  CAS  Google Scholar 

  21. Barchet, W., Cella, M. & Colonna, M. Plasmacytoid dendritic cells–-virus experts of innate immunity. Semin. Immunol. 17, 253–261 (2005).

    Article  CAS  Google Scholar 

  22. Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119 (2004).

    Article  CAS  Google Scholar 

  23. Barchet, W. et al. Dendritic cells respond to influenza virus through TLR7- and PKR-independent pathways. Eur. J. Immunol. 35, 236–242 (2005).

    Article  CAS  Google Scholar 

  24. Yoneyama, H. et al. Plasmacytoid DCs help lymph node DCs to induce anti-HSV CTLs. J. Exp. Med. 202, 425–435 (2005).

    Article  CAS  Google Scholar 

  25. Lodolce, J.P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    Article  CAS  Google Scholar 

  26. Dubois, S., Mariner, J., Waldmann, T.A. & Tagaya, Y. IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity 17, 537–547 (2002).

    Article  CAS  Google Scholar 

  27. Suzuki, H. et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor β. Science 268, 1472–1476 (1995).

    Article  CAS  Google Scholar 

  28. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  Google Scholar 

  29. Xu, J. et al. Mice deficient for the CD40 ligand. Immunity 1, 423–431 (1994).

    Article  CAS  Google Scholar 

  30. Yamamoto, S. et al. Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN and augment IFN-mediated natural killer activity. J. Immunol. 148, 4072–4076 (1992).

    CAS  PubMed  Google Scholar 

  31. Krieg, A.M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–548 (1995).

    Article  CAS  Google Scholar 

  32. Klinman, D.M., Yi, A., Beaucage, S.L., Conover, J. & Krieg, A.M. CpG motifs expressed by bacterial DNA rapidly induce lymphocytes to secrete IL-6, IL-12 and IFNγ. Proc. Natl. Acad. Sci. USA 93, 2879–2883 (1996).

    Article  CAS  Google Scholar 

  33. Dittmer, U. & Olbrich, A.R. Treatment of infectious diseases with immunostimulatory oligodeoxynucleotides containing CpG motifs. Curr. Opin. Microbiol. 6, 472–477 (2003).

    Article  CAS  Google Scholar 

  34. Finlay, B.B. & Hancock, R.E. Can innate immunity be enhanced to treat microbial infections? Nat. Rev. Microbiol. 2, 497–504 (2004).

    Article  CAS  Google Scholar 

  35. Jahrsdorfer, B. & Weiner, G.J. CpG oligodeoxynucleotides for immune stimulation in cancer immunotherapy. Curr. Opin. Investig. Drugs 4, 686–690 (2003).

    PubMed  Google Scholar 

  36. Carpentier, A.F., Auf, G. & Delattre, J.Y. CpG oligodeoxynucleotides for cancer immunotherapy, review of the literature and potential applications in malignant glioma. Front. Biosci. 8, 115–127 (2003).

    Article  Google Scholar 

  37. Kline, J.N. et al. Modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of asthma. J. Immunol. 160, 2555–2559 (1998).

    CAS  Google Scholar 

  38. Weiss, R. et al. Design of protective and therapeutic DNA vaccines for the treatment of allergic diseases. Curr. Drug Targets Inflamm. Allergy 4, 585–597 (2005).

    Article  CAS  Google Scholar 

  39. Krug, A. et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur. J. Immunol. 31, 3026–3037 (2001).

    Article  CAS  Google Scholar 

  40. Schulz, O. et al. CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity 13, 453–462 (2000).

    Article  CAS  Google Scholar 

  41. Mackey, M.F. et al. Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J. Immunol. 161, 2094–2098 (1998).

    CAS  PubMed  Google Scholar 

  42. Fontana, S. et al. Functional defects of dendritic cells in patients with CD40 deficiency. Blood 102, 4099–4106 (2003).

    Article  CAS  Google Scholar 

  43. Ridge, J.P., Di, R.F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ helper cell and T-killer cell. Nature 393, 474–478 (1998).

    Article  CAS  Google Scholar 

  44. Bennett, S.R. et al. Help for cytotoxic T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    Article  CAS  Google Scholar 

  45. Schoenberger, S.P., Toes, R.E.M., van der Voort, E.I.H., Offringa, R. & Melief, J.M. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483 (1998).

    Article  CAS  Google Scholar 

  46. Smith, C.M. et al. Cognate CD4+ T cell licensing of dendritic cells in CD8+ T cell immunity. Nat. Immunol. 5, 1143–1148 (2004).

    Article  CAS  Google Scholar 

  47. Buller, R.M., Holmes, K.L., Hugin, A., Frederickson, T.N. & Morse, H.C. Induction of cytotoxic T-cell responses in vivo in the absence of CD4 helper cells. Nature 328, 77–79 (1987).

    Article  CAS  Google Scholar 

  48. Rahemtulla, A. et al. Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature 353, 180–184 (1991).

    Article  CAS  Google Scholar 

  49. Ishii, K.J. et al. CpG-activated Thy1.2+ dendritic cells protect against lethal Listeria monocytogenes infection. Eur. J. Immunol. 35, 2397–2405 (2005).

    Article  CAS  Google Scholar 

  50. Marzo, A.L. et al. Fully functional memory CD8 T cells in the absence of CD4 T cells. J. Immunol. 173, 969–975 (2004).

    Article  CAS  Google Scholar 

  51. Nguyen, K.B. et al. Coordinated and distinct roles for IFN-αβ, IL-12, and IL-15 regulation of NK cell responses to viral infection. J. Immunol. 169, 4279–4287 (2002).

    Article  CAS  Google Scholar 

  52. Krug, A. et al. Herpes simplex virus type 1 activates murine natural interferon-producing cells through Toll-like receptor 9. Blood 103, 1433–1437 (2004).

    Article  CAS  Google Scholar 

  53. Hochrein, H. et al. Herpes simplex virus type-1 induces IFN-α production via Toll-like receptor 9-dependent and independent pathways. Proc. Natl. Acad. Sci. USA 101, 11416–11421 (2004).

    Article  CAS  Google Scholar 

  54. Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198, 513–520 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Shibata, N. Kakizaki and K. Onodera for animal care; K. Yamashita and Y. Abe for experimental support; K. Hasegawa for discussions; S. Jung (Weizmann Institute of Science, Rehovot, Israel) for DTR-GFP mice; T.W. Mak (Campbell Family Institute, Toronto, Canada) for B6 Il2rb−/− mice; H. Kikutani (Osaka University, Suita, Japan) for B6 Cd40−/− mice; R. Abe (Tokyo University of Science, Noda, Japan) for B6 Cd40lg−/− mice; and H. Yagita (Juntendo University, Tokyo, Japan) for mAb MR1. Supported by the Toray Science Foundation (T.O.), the Takeda Science Foundation (T.O.), the Novartis Foundation for the Promotion of Science (T.O.), the Sankyo Foundation for Life Science (T.O.), a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports and Culture of Japan (16017212 and 16043204 to T.O.), a Grant-in-Aid for Creative Scientific Research by the Japan Society for the Promotion of Science (13GS0015) and the Japan Society for the Promotion of Science for Young Scientists (H.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Ohteki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The kinetic analysis of serum IFN-γ production after CpG injection. (PDF 250 kb)

Supplementary Fig. 2

The kinetic analysis of serum IL-12 p70 production after CpG injection. (PDF 247 kb)

Supplementary Figure 3

A system of mixed BM-chimeras. (PDF 520 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwajima, S., Sato, T., Ishida, K. et al. Interleukin 15–dependent crosstalk between conventional and plasmacytoid dendritic cells is essential for CpG-induced immune activation. Nat Immunol 7, 740–746 (2006). https://doi.org/10.1038/ni1348

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1348

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing