Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Negative regulation of CD8 expression via Cd8 enhancer–mediated recruitment of the zinc finger protein MAZR

Abstract

Coreceptor expression is tightly regulated during thymocyte development. Deletion of specific Cd8 enhancers leads to variegated expression of CD8αβ heterodimers in double-positive thymocytes. Here we show CD8 variegation is correlated with an epigenetic 'off' state, linking Cd8 enhancer function with chromatin remodeling of the adjacent genes Cd8a and Cd8b1 (Cd8). The zinc finger protein MAZR bound the Cd8 enhancer and interacted with the nuclear receptor corepressor N-CoR complex in double-negative thymocytes. MAZR was downregulated in double-positive and CD8 single-positive thymocytes. 'Enforced' expression of MAZR led to impaired Cd8 activation and variegated CD8 expression. Our results demonstrate epigenetic control of the Cd8 loci and identify MAZR as an important regulator of Cd8 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epigenetic changes at the Cd8aCd8b1 complex in thymocytes from mice doubly deficient in E8I and E8II.
Figure 2: DNA methylation of the promoter, exon and intron regions of Cd8a and Cd8b1.
Figure 3: E8II binding properties and expression pattern of MAZR.
Figure 4: Enforced expression of MAZR in thymocytes induces variegation of CD8 expression.
Figure 5: MAZR-induced variegation in wild-type, E8I-deficient and E8II-deficient thymocytes.
Figure 6: MAZR is recruited to multiple sites in the Cd8aCd8b1 complex.
Figure 7: BTB domain–dependent interaction of MAZR and N-CoR.
Figure 8: The BTB domain alone is not sufficient to induce variegated expression of CD8 in DP thymocytes.

Similar content being viewed by others

References

  1. Fisher, A.G. Cellular identity and lineage choice. Nat. Rev. Immunol. 2, 977–982 (2002).

    Article  CAS  Google Scholar 

  2. Ansel, K.M., Lee, D.U. & Rao, A. An epigenetic view of helper T cell differentiation. Nat. Immunol. 4, 616–623 (2003).

    Article  CAS  Google Scholar 

  3. Smale, S.T. The establishment and maintenance of lymphocyte identity through gene silencing. Nat. Immunol. 4, 607–615 (2003).

    Article  CAS  Google Scholar 

  4. Taniuchi, I., Ellmeier, W. & Littman, D.R. The CD4/CD8 lineage choice: new insights into epigenetic regulation during T cell development. Adv. Immunol. 83, 55–89 (2004).

    Article  CAS  Google Scholar 

  5. Sawada, S. & Littman, D.R. Identification and characterization of a T-cell-specific enhancer adjacent to the murine Cd4 gene. Mol. Cell. Biol. 11, 5506–5515 (1991).

    Article  CAS  Google Scholar 

  6. Donda, A., Schulz, M., Burki, K., De Libero, G. & Uematsu, Y. Identification and characterization of a human CD4 silencer. Eur. J. Immunol. 26, 493–500 (1996).

    Article  CAS  Google Scholar 

  7. Sawada, S., Scarborough, J.D., Killeen, N. & Littman, D.R. A lineage-specific transcriptional silencer regulates Cd4 gene expression during T lymphocyte development. Cell 77, 917–929 (1994).

    Article  CAS  Google Scholar 

  8. Siu, G., Wurster, A.L., Duncan, D.D., Soliman, T.M. & Hedrick, S.M. A transcriptional silencer controls the developmental expression of the CD4 gene. EMBO J. 13, 3570–3579 (1994).

    Article  CAS  Google Scholar 

  9. Zou, Y.R. et al. Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nat. Genet. 29, 332–336 (2001).

    Article  CAS  Google Scholar 

  10. Leung, R.K. et al. Deletion of the Cd4 silencer element supports a stochastic mechanism of thymocyte lineage commitment. Nat. Immunol. 2, 1167–1173 (2001).

    Article  CAS  Google Scholar 

  11. Kioussis, D. & Ellmeier, W. Chromatin and CD4, CD8A and CD8B gene expression during thymic differentiation. Nat. Rev. Immunol. 2, 909–919 (2002).

    Article  CAS  Google Scholar 

  12. Ellmeier, W., Sunshine, M.J., Losos, K. & Littman, D.R. Multiple developmental stage-specific enhancers regulate CD8 expression in developing thymocytes and in thymus-independent T cells. Immunity 9, 485–496 (1998).

    Article  CAS  Google Scholar 

  13. Hostert, A. et al. Hierarchical interactions of control elements determine CD8α gene expression in subsets of thymocytes and peripheral T cells. Immunity 9, 497–508 (1998).

    Article  CAS  Google Scholar 

  14. Ellmeier, W., Sunshine, M.J., Maschek, R. & Littman, D.R. Combined deletion of CD8 locus cis-regulatory elements affects initiation but not maintenance of CD8 expression. Immunity 16, 623–634 (2002).

    Article  CAS  Google Scholar 

  15. Garefalaki, A. et al. Variegated expression of CD8α resulting from in situ deletion of regulatory sequences. Immunity 16, 635–647 (2002).

    Article  CAS  Google Scholar 

  16. Harker, N. et al. The CD8A gene locus is regulated by the Ikaros family of proteins. Mol. Cell 10, 1403–1415 (2002).

    Article  CAS  Google Scholar 

  17. Feik, N. et al. Functional and molecular analysis of the double-positive stage-specific CD8 enhancer E8III during thymocyte development. J. Immunol. 174, 1513–1524 (2005).

    Article  CAS  Google Scholar 

  18. Chi, T.H. et al. Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes. Nature 418, 195–199 (2002).

    Article  CAS  Google Scholar 

  19. Lee, P.P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    Article  CAS  Google Scholar 

  20. Kobayashi, A. et al. A combinatorial code for gene expression generated by transcription factor Bach2 and MAZR (MAZ-related factor) through the BTB/POZ domain. Mol. Cell. Biol. 20, 1733–1746 (2000).

    Article  CAS  Google Scholar 

  21. Bernstein, B.E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    Article  CAS  Google Scholar 

  22. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  23. Carbone, A.M., Marrack, P. & Kappler, J.W. Demethylated Cd8 gene in CD4+ T cells suggests that CD4+ cells develop from CD8+ precursors. Science 242, 1174–1176 (1988).

    Article  CAS  Google Scholar 

  24. Hamerman, J.A., Page, S.T. & Pullen, A.M. Distinct methylation states of the Cd8b gene in peripheral T cells and intraepithelial lymphocytes. J. Immunol. 159, 1240–1246 (1997).

    CAS  PubMed  Google Scholar 

  25. van Meerwijk, J.P. & Germain, R.N. Development of mature CD8+ thymocytes: selection rather than instruction? Science 261, 911–915 (1993).

    Article  CAS  Google Scholar 

  26. He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826–833 (2005).

    Article  CAS  Google Scholar 

  27. Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol. 6, 373–381 (2005).

    Article  CAS  Google Scholar 

  28. Huynh, K.D. & Bardwell, V.J. The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 17, 2473–2484 (1998).

    Article  CAS  Google Scholar 

  29. Polo, J.M. et al. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat. Med. 10, 1329–1335 (2004).

    Article  CAS  Google Scholar 

  30. Yoon, H.G., Chan, D.W., Reynolds, A.B., Qin, J. & Wong, J. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol. Cell 12, 723–734 (2003).

    Article  CAS  Google Scholar 

  31. Melnick, A. et al. Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors. Mol. Cell. Biol. 22, 1804–1818 (2002).

    Article  CAS  Google Scholar 

  32. Sato, T. et al. Dual functions of Runx proteins for reactivating CD8 and silencing CD4 at the commitment process into CD8 thymocytes. Immunity 22, 317–328 (2005).

    Article  CAS  Google Scholar 

  33. Jepsen, K. & Rosenfeld, M.G. Biological roles and mechanistic actions of co-repressor complexes. J. Cell Sci. 115, 689–698 (2002).

    CAS  PubMed  Google Scholar 

  34. Jepsen, K. et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102, 753–763 (2000).

    Article  CAS  Google Scholar 

  35. Wack, A., Coles, M., Norton, T., Hostert, A. & Kioussis, D. Early onset of CD8 transgene expression inhibits the transition from DN3 to DP thymocytes. J. Immunol. 165, 1236–1242 (2000).

    Article  CAS  Google Scholar 

  36. Pear, W.S. et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92, 3780–3792 (1998).

    CAS  PubMed  Google Scholar 

  37. Schreiber, E., Matthias, P., Muller, M.M. & Schaffner, W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 17, 6419 (1989).

    Article  CAS  Google Scholar 

  38. Ausubel, F.M. et al. Current Protocols in Molecular Biology Ch. 10 (Greene Publishing Associates–Wiley Interscience, New York, 1992).

    Google Scholar 

  39. Hostert, A. et al. A CD8 genomic fragment that directs subset-specific expression of CD8 in transgenic mice. J. Immunol. 158, 4270–4281 (1997).

    CAS  Google Scholar 

  40. Gorman, S.D., Sun, Y.H., Zamoyska, R. & Parnes, J.R. Molecular linkage of the Ly-3 and Ly-2 genes. Requirement of Ly-2 for Ly-3 surface expression. J. Immunol. 140, 3646–3653 (1988).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank V.J. Bardwell for N-CoR expression constructs; E. Pfeiffer and E. Selzev for help with irradiation; and S. Sakaguchi, P. Kinross and R. Herbst for critical reading of the manuscript. Supported by the Austrian Science Fund (P14261 and P16708), the START Program (Project Y-163) of the Austrian Ministry of Education, Science and Culture, the K-plus Competence Center Biomolecular Therapeutics, the Federal Bank of Austria (Project 10530), the Austrian Program for Advanced Research and Technology of the Austrian Academy of Sciences (W.E.) and the National Institutes of Health (HD39454 and HD18184 to C.B.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Ellmeier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Loss of Dnmt1 leads to a partial reactivation of CD8 expression in variegated DP cells. (PDF 80 kb)

Supplementary Fig. 2

Map of the clone isolated in the YOH screen and localization of the bait RE-1 sequence. (PDF 123 kb)

Supplementary Fig. 3

Specificity of the anti-MAZR serum. (PDF 84 kb)

Supplementary Fig. 4

Retroviral constructs used for the transduction of hematopoietic stem cells. (PDF 95 kb)

Supplementary Fig. 5

CD8-negative DP thymocytes develop upon forced expression of MAZR in Tcra/ thymocytes. (PDF 140 kb)

Supplementary Table 1

PCR primers used for bisulfite sequencing analysis. (PDF 12 kb)

Supplementary Table 2

PCR primers used for ChIP assays. (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilic, I., Koesters, C., Unger, B. et al. Negative regulation of CD8 expression via Cd8 enhancer–mediated recruitment of the zinc finger protein MAZR. Nat Immunol 7, 392–400 (2006). https://doi.org/10.1038/ni1311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing