Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor

Abstract

Natural killer T cells express a conserved, semi-invariant αβ T cell receptor that has specificity for self glycosphingolipids and microbial cell wall α-glycuronosylceramide antigens presented by CD1d molecules. Here we report the crystal structure of CD1d in complex with a short-chain synthetic variant of α-galactosylceramide at a resolution of 2.2 Å. This structure elucidates the basis for the high specificity of these microbial ligands and explains the restriction of the α-linkage as a unique pathogen-specific pattern-recognition motif. Comparison of the binding of altered lipid ligands to CD1d and T cell receptors suggested that the differential T helper type 1–like and T helper type 2–like properties of natural killer T cells may originate largely from differences in their 'loading' in different cell types and hence in their tissue distribution in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PBS-25 is an agonist of NKT cells.
Figure 2: Kinetics of the binding of PBS-25 to CD1d.
Figure 3: Overview of the mouse CD1d structure with bound PBS-25 glycolipid.
Figure 4: Conformation of the short α-GalCer in the mouse CD1d binding groove.
Figure 5: 'Stereo' view of the specific hydrogen bond network between mouse CD1d and an α-GalCer ligand.
Figure 6: CD1d antigen-binding grooves with crystallized or modeled ligands.
Figure 7: Pharmacological distribution of α-GalCer and PBS-25.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

Protein Data Bank

References

  1. Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23, 877–900 (2004).

    Article  Google Scholar 

  2. Vincent, M.S. et al. CD1-dependent dendritic cell instruction. Nat. Immunol. 3, 1163–1168 (2002).

    Article  CAS  Google Scholar 

  3. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    Article  CAS  Google Scholar 

  4. Kinjo, Y. et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520–525 (2005).

    Article  CAS  Google Scholar 

  5. Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  CAS  Google Scholar 

  6. Wu, D. et al. Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc. Natl. Acad. Sci. USA 102, 1351–1356 (2005).

    Article  CAS  Google Scholar 

  7. Bendelac, A., Bonneville, M. & Kearney, J.F. Autoreactivity by design: innate B and T lymphocytes. Nat. Rev. Immunol. 1, 177–186 (2001).

    Article  CAS  Google Scholar 

  8. Fischer, K. et al. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc. Natl. Acad. Sci. USA 101, 10685–10690 (2004).

    Article  CAS  Google Scholar 

  9. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Va14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  Google Scholar 

  10. Omae, F. et al. DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine. Biochem. J. 379, 687–695 (2004).

    Article  CAS  Google Scholar 

  11. Fujii, S., Shimizu, K., Smith, C., Bonifaz, L. & Steinman, R.M. Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med. 198, 267–279 (2003).

    Article  CAS  Google Scholar 

  12. Hermans, I.F. et al. NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J. Immunol. 171, 5140–5147 (2003).

    Article  CAS  Google Scholar 

  13. Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001).

    Article  CAS  Google Scholar 

  14. Goff, R.D. et al. Effects of lipid chain lengths in α-galactosylceramides on cytokine release by natural killer T cells. J. Am. Chem. Soc. 126, 13602–13603 (2004).

    Article  CAS  Google Scholar 

  15. Yu, K.O. et al. Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α-galactosylceramides. Proc. Natl. Acad. Sci. USA 102, 3383–3388 (2005).

    Article  CAS  Google Scholar 

  16. Rudolph, M.G. et al. The crystal structures of K(bm1) and K(bm8) reveal that subtle changes in the peptide environment impact thermostability and alloreactivity. Immunity 14, 231–242 (2001).

    Article  CAS  Google Scholar 

  17. Cantu, C., III, Benlagha, K., Savage, P.B., Bendelac, A. & Teyton, L. The paradox of immune molecular recognition of α-galactosylceramide: low affinity, low specificity for CD1d, high affinity for αβ TCRs. J. Immunol. 170, 4673–4682 (2003).

    Article  CAS  Google Scholar 

  18. Zeng, Z. et al. Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science 277, 339–345 (1997).

    Article  CAS  Google Scholar 

  19. Zajonc, D.M., Elsliger, M.A., Teyton, L. & Wilson, I.A. Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Å. Nat. Immunol. 4, 808–815 (2003).

    Article  CAS  Google Scholar 

  20. Moody, D.B., Zajonc, D.M. & Wilson, I.A. Anatomy of CD1-lipid antigen complexes. Nat. Rev. Immunol. 5, 387–399 (2005).

    Article  CAS  Google Scholar 

  21. Gadola, S.D. et al. Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains. Nat. Immunol. 3, 721–726 (2002).

    Article  CAS  Google Scholar 

  22. Batuwangala, T. et al. The crystal structure of human CD1b with a bound bacterial glycolipid. J. Immunol. 172, 2382–2388 (2004).

    Article  CAS  Google Scholar 

  23. Scott, C.A., Garcia, K.C., Carbone, F.R., Wilson, I.A. & Teyton, L. Role of chain pairing for the production of functional soluble I-A major histocompatibility complex class II molecules. J. Exp. Med. 183, 2087–2095 (1996).

    Article  CAS  Google Scholar 

  24. Apostolopoulos, V. et al. Crystal structure of a non-canonical high affinity peptide complexed with MHC class I: a novel use of alternative anchors. J. Mol. Biol. 318, 1307–1316 (2002).

    Article  CAS  Google Scholar 

  25. Zajonc, D.M. et al. Molecular mechanism of lipopeptide presentation by CD1a. Immunity 22, 209–219 (2005).

    Article  CAS  Google Scholar 

  26. Brossay, L. et al. Structural requirements for galactosylceramide recognition by CD1-restricted NK T cells. J. Immunol. 161, 5124–5128 (1998).

    CAS  PubMed  Google Scholar 

  27. Burdin, N. et al. Structural requirements for antigen presentation by mouse CD1. Proc. Natl. Acad. Sci. USA 97, 10156–10161 (2000).

    Article  CAS  Google Scholar 

  28. Sidobre, S. et al. The Vα14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex. J. Immunol. 169, 1340–1348 (2002).

    Article  CAS  Google Scholar 

  29. Sidobre, S. et al. The T cell antigen receptor expressed by Vα14i NKT cells has a unique mode of glycosphingolipid antigen recognition. Proc. Natl. Acad. Sci. USA 101, 12254–12259 (2004).

    Article  CAS  Google Scholar 

  30. Stanic, A.K. et al. Defective presentation of the CD1d1-restricted natural Vα14Jα18 NKT lymphocyte antigen caused by β-D-glucosylceramide synthase deficiency. Proc. Natl. Acad. Sci. USA 100, 1849–1854 (2003).

    Article  CAS  Google Scholar 

  31. Parekh, V.V. et al. Quantitative and qualitative differences in the in vivo response of NKT cells to distinct α- and β-anomeric glycolipids. J. Immunol. 173, 3693–3706 (2004).

    Article  CAS  Google Scholar 

  32. Ortaldo, J.R. et al. Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides. J. Immunol. 172, 943–953 (2004).

    Article  CAS  Google Scholar 

  33. Koch, M. et al. The crystal structure of human CD1d with and without α-galactosylceramide. Nat. Immunol. advance online publication 10 July 2005 (10.1038/ni1225).

  34. Speir, J.A. et al. Structural basis of 2C TCR allorecognition of H-2Ld peptide complexes. Immunity 8, 553–562 (1998).

    Article  CAS  Google Scholar 

  35. Wu, D.Y., Segal, N.H., Sidobre, S., Kronenberg, M. & Chapman, P.B. Cross-presentation of disialoganglioside GD3 to natural killer T cells. J. Exp. Med. 198, 173–181 (2003).

    Article  CAS  Google Scholar 

  36. Amprey, J.L. et al. A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J. Exp. Med. 200, 895–904 (2004).

    Article  CAS  Google Scholar 

  37. Zhou, D. et al. Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303, 523–527 (2004).

    Article  CAS  Google Scholar 

  38. Van Rhijn, I. et al. CD1d-restricted T cell activation by nonlipidic small molecules. Proc. Natl. Acad. Sci. USA 101, 13578–13583 (2004).

    Article  CAS  Google Scholar 

  39. Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD48 T cells in mice and humans. J. Exp. Med. 180, 1097–1106 (1994).

    Article  CAS  Google Scholar 

  40. Apostolou, I., Cumano, A., Gachelin, G. & Kourilsky, P. Evidence for two subgroups of CD4CD8 NKT cells with distinct TCR αβ repertoires and differential distribution in lymphoid tissues. J. Immunol. 165, 2481–2490 (2000).

    Article  CAS  Google Scholar 

  41. Garcia, K.C., Teyton, L. & Wilson, I.A. Structural basis of T cell recognition. Annu. Rev. Immunol. 17, 369–397 (1999).

    Article  CAS  Google Scholar 

  42. Wu, L.C., Tuot, D.S., Lyons, D.S., Garcia, K.C. & Davis, M.M. Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature 418, 552–556 (2002).

    Article  CAS  Google Scholar 

  43. Piel, J. et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl. Acad. Sci. USA 101, 16222–16227 (2004).

    Article  CAS  Google Scholar 

  44. Bezbradica, J.S. et al. Distinct roles of dendritic cells and B cells in Vα14Jα18 natural T cell activation in vivo. J. Immunol. 174, 4696–4705 (2005).

    Article  CAS  Google Scholar 

  45. Moody, D.B., Besra, G.S., Wilson, I.A. & Porcelli, S.A. The molecular basis of CD1-mediated presentation of lipid antigens. Immunol. Rev. 172, 285–296 (1999).

    Article  CAS  Google Scholar 

  46. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).

    Article  CAS  Google Scholar 

  47. Otwinowski, Z. & Minor, W. HKL: Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  48. Vagin, A.A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Cryst. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  49. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum likelihood method. Acta Crystallogr. D53, 240–255 (1997).

    CAS  Google Scholar 

  50. Jones, T.A., Zou, J.Y., Cowan, S. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  51. Schuttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D60, 1355–1363 (2004).

    Google Scholar 

  52. Kleywegt, G.J. & Jones, T.A. Homo crystallographicus–quo vadis?. Structure (Camb) 10, 465–472 (2002).

    Article  CAS  Google Scholar 

  53. Stanfield, R.L., Ghiara, J.B., Ollmann Saphire, E., Profy, A.T. & Wilson, I.A. Recurring conformation of the human immunodeficiency virus type 1 gp120 V3 loop. Virology 315, 159–173 (2003).

    Article  CAS  Google Scholar 

  54. Lovell, S.C. et al. Structure validation by Cα geometry: ψ,φ and Cβ deviation. Proteins 50, 437–450 (2003).

    Article  CAS  Google Scholar 

  55. DeLano, W. The PyMOL Molecular Graphics System. http://www.pymol.org. (2002).

  56. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  57. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  Google Scholar 

  58. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  59. Jahng, A. et al. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J. Exp. Med. 199, 947–957 (2004).

    Article  CAS  Google Scholar 

  60. CCP4. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  61. Kamada, N. et al. Crucial amino acid residues of mouse CD1d for glycolipid ligand presentation to Vα14 NKT cells. Int. Immunol. 13, 853–861 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Advanced Light Source BL 8.2.2 for support with data collection; P. Wright and L. Tennant for help with the circular dichroism experiments; and R. Stanfield for help with data analysis. Supported by the National Institutes of Health (AI053725 to L.T., A.B. and P.B.S.; GM62116 and CA58896 to I.A.W.), Skaggs Institute for Chemical Biology (D.M.Z. and I.A.W.) and Cancer Research Institute (J.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ian A Wilson or Luc Teyton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zajonc, D., Cantu, C., Mattner, J. et al. Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nat Immunol 6, 810–818 (2005). https://doi.org/10.1038/ni1224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing