Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of target cell survival in thyroid autoimmunity by T helper cytokines via regulation of apoptotic proteins

Abstract

After autoimmune inflammation, interactions between CD95 and its ligand (CD95L) mediate thyrocyte destruction in Hashimoto's thyroiditis (HT). Conversely, thyroid autoimmune processes that lead to Graves' disease (GD) result in autoantibody-mediated thyrotropin receptor stimulation without thyrocyte depletion. We found that GD thyrocytes expressed CD95 and CD95L in a similar manner to HT thyrocytes, but did not undergo CD95-induced apoptosis either in vivo or in vitro. This pattern was due to the differential production of TH1 and TH2 cytokines. Interferon γ promoted caspase up-regulation and CD95-induced apoptosis in HT thyrocytes, whereas interleukin 4 and interleukin 10 protected GD thyrocytes by potent up-regulation of cFLIP and Bcl-xL, which prevented CD95-induced apoptosis in sensitized thyrocytes. Thus, modulation of apoptosis-related proteins by TH1 and TH2 cytokines controls thyrocyte survival in thyroid autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of CD95L and CD95 in autoimmune thyrocytes.
Figure 2: Resistance to apoptosis of GD thyrocytes.
Figure 3: Expression of pro-apoptotic and anti-apoptotic factors in autoimmune and nonautoimmune thyrocytes.
Figure 4: Pro-apoptotic and anti-apoptotic effect of TH1 and TH2 cytokines on thyrocytes.
Figure 5: Inhibition of CD95-induced apoptosis in thyrocytes by Bcl-xL and cFLIP.

Similar content being viewed by others

References

  1. Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 ( 1996).

    Article  CAS  Google Scholar 

  2. Romagnani, S. The Th1/Th2 paradigm. Immunol. Today 18, 263–266 (1997).

    Article  CAS  Google Scholar 

  3. Weetman, A. P. & McGregor, A. M. Autoimmune thyroid disease: further developments in our understanding. Endocr. Rev. 15, 788–830 (1994).

    CAS  PubMed  Google Scholar 

  4. Dayan, C. M. & Daniels, G. H. Chronic autoimmune thyroiditis . N. Engl. J. Med. 335, 99– 107 (1996).

    Article  CAS  Google Scholar 

  5. Iwatani, Y., Hidaka, Y., Matsuzuka, F., Kuma, K. & Amino, N. Intrathyroidal lymphocyte subsets, including unusual CD4+ CD8+ cells and CD3loTCRαβlo/−CD4CD8 cells, in autoimmune thyroid disease. Clin. Exp. Immunol. 93, 430–436 ( 1993).

    Article  CAS  Google Scholar 

  6. Roura-Mir, C. et al. Single-cell analysis of intrathyroidal lymphocytes shows differential cytokine expression in Hashimoto's and Graves' disease. Eur. J. Immunol. 27, 3290–3302 ( 1997).

    Article  CAS  Google Scholar 

  7. De Maria, R. & Testi, R. Fas-FasL interactions: a common pathogenetic mechanism in organ-specific autoimmunity. Immunol. Today 19, 121–125 (1998).

    CAS  PubMed  Google Scholar 

  8. Caturegli, P. et al. IgG subclass distribution of thyroglobulin antibodies in patients with thyroid disease. Clin. Exp. Immunol. 98, 464–469 (1994).

    Article  CAS  Google Scholar 

  9. Nagata, S. Apoptosis by death factor. Cell 88, 355– 365 (1997).

    Article  CAS  Google Scholar 

  10. Green, D. R. Apoptotic pathways: the roads to ruin. Cell 94, 695–698 (1998).

    Article  CAS  Google Scholar 

  11. Tschopp, J., Irmler, M. & Thome, M. Inhibition of fas death signals by FLIPs. Curr. Opin. Immunol. 10, 552–528 (1998).

    Article  CAS  Google Scholar 

  12. Rasper, D. M. et al. Cell death attenuation by `Usurpin', a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death Differ. 5 , 271–288 (1998).

    Article  CAS  Google Scholar 

  13. Krammer, P. H. CD95(APO-1/Fas)-mediated apoptosis: live and let die. Adv. Immunol. 71, 163–210 ( 1999).

    Article  CAS  Google Scholar 

  14. Waldner, H., Sobel, R. A., Howard, E. & Kuchroo, V. K. Fas- and FasL-deficient mice are resistant to induction of autoimmune encephalomyelitis. J. Immunol. 159, 3100–3103 (1997).

    CAS  PubMed  Google Scholar 

  15. Sabelko, K. A., Kelly, K. A., Nahm, M. H., Cross, A. H. & Russell, J. H. Fas and Fas ligand enhance the pathogenesis of experimental allergic encephalomyelitis, but are not essential for immune privilege in the central nervous system. J. Immunol. 159, 3096–3099 ( 1997).

    CAS  PubMed  Google Scholar 

  16. Giordano, C. et al. Potential involvement of Fas and its ligand in the pathogenesis of Hashimoto's thyroiditis. Science 275, 960–963 (1997).

    Article  CAS  Google Scholar 

  17. Mitsiades, N. et al. Fas/Fas ligand up-regulation and Bcl-2 down-regulation may be significant in the pathogenesis of Hashimoto's thyroiditis. J. Clin. Endocrinol. Metab. 83, 2199– 2203 (1998).

    CAS  PubMed  Google Scholar 

  18. Stassi, G. et al. Fas/Fas ligand-driven T cell apoptosis as a consequence of ineffective thyroid immunoprivilege in Hashimoto's thyroiditis. J. Immunol. 162, 263–267 (1999).

    CAS  PubMed  Google Scholar 

  19. Leithauser, F. et al. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab. Invest. 69, 415–429 (1993).

    CAS  PubMed  Google Scholar 

  20. Kawakami, A. et al. Thyroid-stimulating hormone inhibits Fas antigen-mediated apoptosis of human thyrocytes in vitro. Endocrinology 137, 3163–3169 (1996).

    Article  CAS  Google Scholar 

  21. Hammond, L. J. et al. Analysis of apoptosis in relation to tissue destruction associated with Hashimoto's autoimmune thyroiditis. J. Pathol. 182, 138–144 (1997).

    Article  CAS  Google Scholar 

  22. Bretz, J. D., Arscott, P. L., Myc, A. & Baker, J. R. Jr Inflammatory cytokine regulation of Fas-mediated apoptosis in thyroid follicular cells. J. Biol. Chem. 274, 25433– 25438 (1999).

    Article  CAS  Google Scholar 

  23. De Maria, R. et al. Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1. Nature 401, 489– 493 (1999).

    Article  CAS  Google Scholar 

  24. Sarvetnick, N. et al. Loss of pancreatic islet tolerance induced by β-cell expression of interferon-γ. Nature 346, 844–847 (1990).

    Article  CAS  Google Scholar 

  25. Gallichan, W. S., Balasa, B., Davies, J. D. & Sarvetnick, N. Pancreatic IL-4 expression results in islet-reactive Th2 cells that inhibit diabetogenic lymphocytes in the nonobese diabetic mouse. J. Immunol. 163, 1696–1703 ( 1999).

    CAS  PubMed  Google Scholar 

  26. van der Veen, R. C. & Stohlman, S. A. Encephalitogenic Th1 cells are inhibited by Th2 cells with related peptide specificity: relative roles of interleukin (IL)-4 and IL-10. J. Neuroimmunol. 48, 213–220 (1993).

    Article  CAS  Google Scholar 

  27. Racke, M. K. et al. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease. J. Exp. Med. 180, 1961 –1966 (1994).

    Article  CAS  Google Scholar 

  28. Buer, J. et al. Interleukin 10 secretion and impaired effector function of major histocompatibility complex class II-restricted T cells anergized in vivo . J. Exp. Med. 187, 177– 183 (1998).

    Article  CAS  Google Scholar 

  29. Stohlman, S. A., Pei, L., Cua, D. J., Li, Z. & Hinton, D. R. Activation of regulatory cells suppresses experimental allergic encephalomyelitis via secretion of IL-10. J. Immunol. 163, 6338–6344 ( 1999).

    CAS  PubMed  Google Scholar 

  30. Pujol-Borrell, R. et al. HLA class II induction in human islet cells by interferon-γ plus tumour necrosis factor or lymphotoxin. Nature 326, 304–306 (1987).

    Article  CAS  Google Scholar 

  31. Dibbert, B. et al. Role for Bcl-xL in delayed eosinophil apoptosis mediated by granulocyte-macrophage colony-stimulating factor and interleukin-5 . Blood 92, 778–783 (1998).

    CAS  PubMed  Google Scholar 

  32. Levy, Y. & Brouet, J. C. Interleukin-10 prevents spontaneous death of germinal center B cells by induction of the bcl-2 protein. J. Clin. Invest. 93, 424–428 (1994).

    Article  CAS  Google Scholar 

  33. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 ( 1998).

    Article  CAS  Google Scholar 

  34. Ashkenazi, A. & Dixit, V. M. Death receptors: signaling and modulation. Science 281, 1305– 1308 (1998).

    Article  CAS  Google Scholar 

  35. Srinivasula, S. M. et al. FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. J. Biol. Chem. 272, 18542–18545 (1997).

    Article  CAS  Google Scholar 

  36. Scaffidi, C., Schmitz, I., Krammer, P. H. & Peter, M. E. The role of c-FLIP in modulation of CD95-induced apoptosis. J. Biol. Chem. 274, 1541–1548 (1999).

    Article  CAS  Google Scholar 

  37. Grignani, F. et al. High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res. 58, 14 –19 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by grants from AIRC (to R. D. M.) and Telethon-Italy, grant number E.735 (to G. S.). D. D. L. is a recipient of a Telethon fellowship. A. Z. is a recipient of a FIRC fellowship. We thank M. Catalano for excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruggero De Maria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stassi, G., Di Liberto, D., Todaro, M. et al. Control of target cell survival in thyroid autoimmunity by T helper cytokines via regulation of apoptotic proteins. Nat Immunol 1, 483–488 (2000). https://doi.org/10.1038/82725

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82725

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing