Perspective | Published:

Innate and adaptive immunity: specificities and signaling hierarchies revisited

  • An Erratum to this article was published on 01 February 2005

Abstract

The conventional classification of known immune responses by specificity may need re-evaluation. The immune system can be classified into two subsystems: the innate and adaptive immune systems. In general, innate immunity is considered a nonspecific response, whereas the adaptive immune system is thought of as being very specific. In addition, the antigen receptors of the adaptive immune response are commonly viewed as 'master sensors' whose engagement dictates lymphocyte function. Here we propose that these ideas do not genuinely reflect the organization of immune responses and that they bias our view of immunity as well as our teaching of immunology. Indeed, the level of specificity and mode of signaling integration used by the main cellular participants in the adaptive and innate immune systems are more similar than previously appreciated.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Janeway, C.A., Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

  2. 2

    Beutler, B. Not “molecular patterns” but molecules. Immunity 19, 155–158 (2003).

  3. 3

    Beutler, B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430, 257–263 (2004).

  4. 4

    Raulet, D.H. Interplay of natural killer cells and their receptors with the adaptive immune response. Nat. Immunol. 5, 996–1002 (2004).

  5. 5

    Medzhitov, R., Preston-Hurlburt, P. & Janeway, C.A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

  6. 6

    Pancer, Z. et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430, 174–180 (2004).

  7. 7

    Rudolph, M.G. & Wilson, I.A. The specificity of TCR/pMHC interaction. Curr. Opin. Immunol. 14, 52–65 (2002).

  8. 8

    Cancro, M.P. & Kearney, J.F. B cell positive selection: road map to the primary repertoire? J. Immunol. 173, 15–19 (2004).

  9. 9

    Crozat, K. & Beutler, B. TLR7: a new sensor of viral infection. Proc. Natl. Acad. Sci. USA 101, 6835–6836 (2004).

  10. 10

    Wedemayer, G.J., Patten, P.A., Wang, L.H., Schultz, P.G. & Stevens, R.C. Structural insights into the evolution of an antibody combining site. Science 276, 1665–1669 (1997).

  11. 11

    Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).

  12. 12

    Goldrath, A.W. & Bevan, M.J. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 255–262 (1999).

  13. 13

    Goldrath, A.W. & Bevan, M.J. Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 11, 183–190 (1999).

  14. 14

    Selin, L.K. et al. Attrition of T cell memory: selective loss of LCMV epitope-specific memory CD8 T cells following infections with heterologous viruses. Immunity 11, 733–742 (1999).

  15. 15

    Welsh, R.M., Selin, L.K. & Szomolanyi-Tsuda, E. Immunological memory to viral infections. Annu. Rev. Immunol. 22, 711–743 (2004).

  16. 16

    Weis, W.I., Taylor, M.E. & Drickamer, K. The C-type lectin superfamily in the immune system. Immunol. Rev. 163, 19–34 (1998).

  17. 17

    Weis, W.I. & Drickamer, K. Trimeric structure of a C-type mannose-binding protein. Structure 2, 1227–1240 (1994).

  18. 18

    Sheriff, S., Chang, C.Y. & Ezekowitz, R.A. Human mannose-binding protein carbohydrate recognition domain trimerizes through a triple α-helical coiled-coil. Nat. Struct. Biol. 1, 789–794 (1994).

  19. 19

    Ulevitch, R.J. Therapeutics targeting the innate immune system. Nat. Rev. Immunol. 4, 512–520 (2004).

  20. 20

    Girardin, S.E. et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003).

  21. 21

    Smith, H.R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl. Acad. Sci. USA 99, 8826–8831 (2002).

  22. 22

    Arase, H., Mocarski, E.S., Campbell, A.E., Hill, A.B. & Lanier, L.L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326 (2002).

  23. 23

    Vivier, E. & Biron, C.A. A pathogen receptor on natural killer cells. Science 296, 1248–1249 (2002).

  24. 24

    Maenaka, K. et al. Killer cell immunoglobulin receptors and T cell receptors bind peptide-major histocompatibility complex class I with distinct thermodynamic and kinetic properties. J. Biol. Chem. 274, 28329–28334 (1999).

  25. 25

    Zinkernagel, R.M. Uncertainties- discrepancies in immunology. Immunol. Rev. 185, 103–125 (2002).

  26. 26

    Stefanova, I. et al. TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat. Immunol. 4, 248–254 (2003).

  27. 27

    Doucey, M.A. et al. The β1 and β3 integrins promote T cell receptor-mediated cytotoxic T lymphocyte activation. J. Biol. Chem. 278, 26983–26991 (2003).

  28. 28

    Berg, R.E., Crossley, E., Murray, S. & Forman, J. Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. J. Exp. Med. 198, 1583–1593 (2003).

  29. 29

    Bernasconi, N.L., Onai, N. & Lanzavecchia, A. A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 101, 4500–4504 (2003).

  30. 30

    Weiss, A. & Littman, D.R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

  31. 31

    Vély, F. & Vivier, E. Conservation of structural features reveals the existence of a large family of inhibitory cell surface receptors and non-inhibitory/activatory counterparts. J. Immunol. 159, 2075–2077 (1997).

  32. 32

    Long, E.O. Regulation of immune responses through inhibitory receptors. Annu. Rev. Immunol. 17, 875–904 (1999).

  33. 33

    Ravetch, J.V. & Lanier, L.L. Immune inhibitory receptors. Science 290, 84–89 (2000).

  34. 34

    Renard, V. et al. Transduction of cytotoxic signals in natural killer cells: a general model of fine tuning between activatory and inhibitory pathways in lymphocytes. Immunol. Rev. 155, 205–221 (1997).

  35. 35

    Vivier, E. & Anfossi, N. Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nat. Rev. Immunol. 4, 190–198 (2004).

  36. 36

    Bendelac, A., Bonneville, M. & Kearney, J.F. Autoreactivity by design: innate B and T lymphocytes. Nat. Rev. Immunol. 1, 177–186 (2001).

  37. 37

    Vivier, E., Tomasello, E. & Paul, P. Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition? Curr. Opin. Immunol. 14, 306–311 (2002).

  38. 38

    Raulet, D.H. Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol. 3, 781–790 (2003).

  39. 39

    Groh, V., Bruhl, A., El-Gabalawy, H., Nelson, J.L. & Spies, T. Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 100, 9452–9457 (2003).

  40. 40

    Poe, J.C., Hasegawa, M. & Tedder, T.F. CD19, CD21, and CD22: multifaceted response regulators of B lymphocyte signal transduction. Int. Rev. Immunol. 20, 739–762 (2001).

  41. 41

    Dal Porto, J.M. et al. B cell antigen receptor signaling 101. Mol. Immunol. 41, 599–613 (2004).

  42. 42

    Daeron, M. et al. The same tyrosine-based inhibition motif, in the intracytoplasmic domain of FcγRIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity 3, 635–646 (1995).

  43. 43

    Karre, K., Ljunggren, H.G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

  44. 44

    Diefenbach, A., Jensen, E.R., Jamieson, A.M. & Raulet, D.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

  45. 45

    Cerwenka, A., Baron, J.L. & Lanier, L.L. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl. Acad. Sci. USA 98, 11521–11526 (2001).

  46. 46

    Bouchon, A., Dietrich, J. & Colonna, M. Cutting edge: inflammatory responses can Be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J. Immunol. 164, 4991–4995 (2000).

  47. 47

    Bouchon, A., Facchetti, F., Weigand, M.A. & Colonna, M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410, 1103–1107 (2001).

  48. 48

    Orwell, G. Animal Farm (Secker and Warburg, London, 1945).

  49. 49

    den Haan, J.M.M. et al. Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 268, 1476–1480 (1995).

  50. 50

    Housset, D. & Malissen, B. What do TCR-pMHC crystal structures teach us about MHC restriction and alloreactivity? Trends Immunol. 24, 429–437 (2003).

  51. 51

    Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002).

  52. 52

    Zinkernagel, R.M. & Doherty, P. Immunological surveillance against altered self components by sensitized T lymphocytes in lymphochoriomeningitis. Nature 251, 547–552 (1974).

  53. 53

    Moretta, L. et al. Human natural killer cells: their origin, receptors and function. Eur. J. Immunol. 32, 1205–1211 (2002).

  54. 54

    Iizuka, K., Naidenko, O.V., Plougastel, B.F., Fremont, D.H. & Yokoyama, W.M. Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nat. Immunol. 801–807 (2003).

  55. 55

    Carlyle, J.R. et al. Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc. Natl. Acad. Sci. USA 101, 3527–3532 (2004).

  56. 56

    Reiser, J.B. et al. CDR3 loop flexibility contributes to the degeneracy of TCR recognition. Nat. Immunol. 4, 241–247 (2003).

  57. 57

    Malissen, B. An evolutionary and structural perspective on T cell antigen receptor function. Immunol. Rev. 191, 7–27 (2003).

  58. 58

    Colonna, M. TREMs in the immune system and beyond. Nat. Rev. Immunol. 3, 445–453 (2003).

  59. 59

    Olcese, L. et al. Killer-cell activatory receptors for MHC Class I molecules are included in a multimeric complex expressed by human killer cells. J. Immunol. 158, 5083–5086 (1997).

  60. 60

    Lanier, L.L., Corliss, B.C., Wu, J., Leong, C. & Phillips, J.H. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391, 703–707 (1998).

  61. 61

    Aoki, N. et al. The role of the DAP12 signal in mouse myeloid differentiation. J. Immunol. 165, 3790–3796 (2000).

Download references

Acknowledgements

We thank S. Ugolini and J. Ewbank for review of the manuscript and C. Beziers-Lafosse for graphic art. Supported by the European Union (ALLOSTEM, E.V.; MUGEN and EPI-PEP-VAC, B.M.), Ligue Nationale contre le Cancer (Equipe labellisée La Ligue, E.V.), Association pour la Recherche contre le Cancer (B.M.), Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique and Ministère de l'Enseignement Supérieur et de la Recherche.

Author information

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: Strategies of immune recognition.
Figure 2: Degeneracy of the TCR antigen-binding site.
Figure 3: Is a 'two-signal' model of T cell activation still tenable? Signals emanating from the TCR (or the BCR) and the optional signals originating from a vast array of cell surface context detectors converge on intracytoplasmic coincident detectors.
Figure 4: Cross-talk between ITAM- and TLR-dependent pathways.