Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autoreactivity and allelic inclusion in a B cell nuclear transfer mouse

Abstract

Lymphocytes typically express only one functional antigen receptor, a restriction contributed to by allelic exclusion. Here we have analyzed B lymphocyte development in offspring of a mouse generated by nuclear transfer using a single donor B lymphocyte. In this mouse, all immunoglobulin alleles were inherited as found in the donor lymphocyte. This donor cell had two rearranged immunoglobulin light chain alleles, both directing the synthesis of light chains that could form functional antigen receptors, one of which was autoreactive. Progeny mice carrying this immunoglobulin light chain allele produced mature B cells, some of which continued to express the autoreactive receptor but required another rearrangement to rescue them from negative selection. Such receptor editing failed to destroy expression of one original light chain allele, thereby recreating dual receptor expression on these surviving B cells. We suggest that autoreactive antibodies in serum of mice and humans are due in part to such 'passenger' receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The immunoglobulin alleles of the B cell nuclear transfer mouse.
Figure 2: Autoreactivity of the Hxkb4 receptor.
Figure 3: Deletion of B cells with the kb4 receptor.
Figure 4: Editing and allelic inclusion of the kb4 receptor.

Similar content being viewed by others

References

  1. Pernis, B., Chiappino, G., Kelus, A.S. & Gell, P.G. Cellular localization of immunoglobulins with different allotypic specificities in rabbit lymphoid tissues. J. Exp. Med. 122, 853–876 (1965).

    Article  CAS  Google Scholar 

  2. Weiler, E. Differential activity of allelic gamma-globulin genes in antibody-producing cells. Proc. Natl. Acad. Sci. USA 54, 1765–1772 (1965).

    Article  CAS  Google Scholar 

  3. Barreto, V. & Cumano, A. Frequency and characterization of phenotypic Ig heavy chain allelically included IgM-expressing B cells in mice. J. Immunol. 164, 893–899 (2000).

    Article  CAS  Google Scholar 

  4. Casellas, R. et al. Contribution of receptor editing to the antibody repertoire. Science 291, 1541–1544 (2001).

    Article  CAS  Google Scholar 

  5. Gay, D., Saunders, T., Camper, S. & Weigert, M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J. Exp. Med. 177, 999–1008 (1993).

    Article  CAS  Google Scholar 

  6. Tiegs, S.L., Russell, D.M. & Nemazee, D. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 177, 1009–1020 (1993).

    Article  CAS  Google Scholar 

  7. Chen, C., Prak, E.L. & Weigert, M. Editing disease-associated autoantibodies. Immunity 6, 97–105 (1997).

    Article  Google Scholar 

  8. Pelanda, R. et al. Receptor editing in a transgenic mouse model: site, efficiency, and role in B cell tolerance and antibody diversification. Immunity 7, 765–775 (1997).

    Article  CAS  Google Scholar 

  9. Halverson, R., Torres, R.M. & Pelanda, R. Receptor editing is the main mechanism of B cell tolerance toward membrane antigens. Nat. Immunol. 5, 645–650 (2004).

    Article  CAS  Google Scholar 

  10. Nemazee, D. Antigen receptor 'capacity' and the sensitivity of self-tolerance. Immunol. Today 17, 25–29 (1996).

    Article  CAS  Google Scholar 

  11. Nemazee, D.A. & Burki, K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature 337, 562–566 (1989).

    Article  CAS  Google Scholar 

  12. Goodnow, C.C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334, 676–682 (1988).

    Article  CAS  Google Scholar 

  13. Retter, M.W. & Nemazee, D. Receptor editing occurs frequently during normal B cell development. J. Exp. Med. 188, 1231–1238 (1998).

    Article  CAS  Google Scholar 

  14. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  Google Scholar 

  15. Louzoun, Y., Friedman, T., Luning Prak, E., Litwin, S. & Weigert, M. Analysis of B cell receptor production and rearrangement. Part I. Light chain rearrangement. Semin. Immunol. 14, 169–190; discussion 221–222 (2002).

    Article  CAS  Google Scholar 

  16. Coleclough, C., Perry, R.P., Karjalainen, K. & Weigert, M. Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression. Nature 290, 372–378 (1981).

    Article  CAS  Google Scholar 

  17. Alt, F.W., Rosenberg, N., Enea, V., Siden, E. & Baltimore, D. Multiple immunoglobulin heavy-chain gene transcripts in Abelson murine leukemia virus-transformed lymphoid cell lines. Mol. Cell. Biol. 2, 386–400 (1982).

    Article  CAS  Google Scholar 

  18. Wabl, M. & Steinberg, C. A theory of allelic and isotypic exclusion for immunoglobulin genes. Proc. Natl. Acad. Sci. USA 79, 6976–6978 (1982).

    Article  CAS  Google Scholar 

  19. Nemazee, D., Martensson, A. & Verkoczy, L. Haplotype exclusion and receptor editing: irreconcilable differences? Semin. Immunol. 14, 191–198; discussion 222–224 (2002).

    Article  CAS  Google Scholar 

  20. Imai, H. et al. Natural autoantibody against apolipoprotein A-I. Detection and characterization of the monoclonal antibody established from normal unimmunized BALB/c mice. J. Immunol. 153, 2290–2301 (1994).

    CAS  PubMed  Google Scholar 

  21. Hayakawa, K. et al. Positive selection of natural autoreactive B cells. Science 285, 113–116 (1999).

    Article  CAS  Google Scholar 

  22. Dighiero, G. et al. High frequency of natural autoantibodies in normal newborn mice. J. Immunol. 134, 765–771 (1985).

    CAS  PubMed  Google Scholar 

  23. Coutinho, A., Kazatchkine, M.D. & Avrameas, S. Natural autoantibodies. Curr. Opin. Immunol. 7, 812–818 (1995).

    Article  CAS  Google Scholar 

  24. Lacroix-Desmazes, S. et al. Self-reactive antibodies (natural autoantibodies) in healthy individuals. J. Immunol. Methods 216, 117–137 (1998).

    Article  CAS  Google Scholar 

  25. Chai, S.K., Mantovani, L., Kasaian, M.T. & Casali, P. Natural autoantibodies. Adv. Exp. Med. Biol. 347, 147–159 (1994).

    Article  CAS  Google Scholar 

  26. Varela, F.J. & Coutinho, A. Second generation immune networks. Immunol. Today 12, 159–166 (1991).

    Article  CAS  Google Scholar 

  27. Diaw, L. et al. Structural and affinity studies of IgM polyreactive natural autoantibodies. J. Immunol. 158, 968–976 (1997).

    CAS  PubMed  Google Scholar 

  28. Sarukhan, A., Garcia, C., Lanoue, A. & von Boehmer, H. Allelic inclusion of T cell receptor alpha genes poses an autoimmune hazard due to low-level expression of autospecific receptors. Immunity 8, 563–570 (1998).

    Article  CAS  Google Scholar 

  29. Hochedlinger, K. & Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–1038 (2002).

    Article  CAS  Google Scholar 

  30. Kouskoff, V. & Nemazee, D. Role of receptor editing and revision in shaping the B and T lymphocyte repertoire. Life Sci. 69, 1105–1113 (2001).

    Article  CAS  Google Scholar 

  31. Ritchie, K.A., Brinster, R.L. & Storb, U. Allelic exclusion and control of endogenous immunoglobulin gene rearrangement in κ transgenic mice. Nature 312, 517–520 (1984).

    Article  CAS  Google Scholar 

  32. Yamagami, T., ten Boekel, E., Andersson, J., Rolink, A. & Melchers, F. Frequencies of multiple IgL chain gene rearrangements in single normal or κL chain-deficient B lineage cells. Immunity 11, 317–327 (1999).

    Article  CAS  Google Scholar 

  33. Schwartz, R.C., Sonenshein, G.E., Bothwell, A. & Gefter, M.L. Multiple expression of Ig λ-chain encoding RNA species in murine plasmacytoma cells. J. Immunol. 126, 2104–2108 (1981).

    CAS  PubMed  Google Scholar 

  34. Diaw, L., Siwarski, D. & Huppi, K. Double light chain producing lymphocytes: an enigma of allelic exclusion. Immunol. Res. 24, 303–310 (2001).

    Article  CAS  Google Scholar 

  35. Chen, X., Martin, F., Forbush, K.A., Perlmutter, R.M. & Kearney, J.F. Evidence for selection of a population of multi-reactive B cells into the splenic marginal zone. Int. Immunol. 9, 27–41 (1997).

    Article  Google Scholar 

  36. Spanopoulou, E. et al. Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev. 8, 1030–1042 (1994).

    Article  CAS  Google Scholar 

  37. Xu, H., Li, H., Suri-Payer, E., Hardy, R.R. & Weigert, M. Regulation of anti-DNA B cells in recombination-activating gene-deficient mice. J. Exp. Med. 188, 1247–1254 (1998).

    Article  CAS  Google Scholar 

  38. Diaw, L., Siwarski, D., DuBois, W., Jones, G. & Huppi, K. Double producers of kappa and lambda define a subset of B cells in mouse plasmacytomas. Mol. Immunol. 37, 775–781 (2000).

    Article  CAS  Google Scholar 

  39. Hardy, R.R., Dangl, J.L., Hayakawa, K., Jager, G. & Herzenberg, L.A. Frequent λ light chain gene rearrangement and expression in a Ly-1 B lymphoma with a productive κ chain allele. Proc. Natl. Acad. Sci. USA 83, 1438–1442 (1986).

    Article  CAS  Google Scholar 

  40. Kwan, S.P., Max, E.E., Seidman, J.G., Leder, P. & Scharff, M.D. Two κ immunoglobulin genes are expressed in the myeloma S107. Cell 26, 57–66 (1981).

    Article  CAS  Google Scholar 

  41. Goldmit, M., Schlissel, M., Cedar, H. & Bergman, Y. Differential accessibility at the κ chain locus plays a role in allelic exclusion. EMBO J. 21, 5255–5261 (2002).

    Article  CAS  Google Scholar 

  42. Liang, H.E., Hsu, L.Y., Cado, D. & Schlissel, M.S. Variegated transcriptional activation of the immunoglobulin κ locus in pre-B cells contributes to the allelic exclusion of light-chain expression. Cell 118, 19–29 (2004).

    Article  CAS  Google Scholar 

  43. Wabl, M.R., Brun, R.B. & Du Pasquier, L. Lymphocytes of the toad Xenopus laevis have the gene set for promoting tadpole development. Science 190, 1310–1312 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Nasseri, M. Weigert, D. Nemazee, and E. Weiss for discussions; K. Hochedlinger and R. Jaenisch for providing nuclear transfer mice; and M. Schlissel for the human Cκ mouse generated by M. Nussenzweig. Supported by a National Institutes of Health (R01 AI41570) and a University of California Biostar Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Wabl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sequence of κ light chain alleles. (PDF 231 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerdes, T., Wabl, M. Autoreactivity and allelic inclusion in a B cell nuclear transfer mouse. Nat Immunol 5, 1282–1287 (2004). https://doi.org/10.1038/ni1133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing