Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII

Abstract

The proteasome is key in the cascade of proteolytic processing required for the generation of peptides presented at the cell surface to cytotoxic T lymphocytes by major histocompatibility complex class I molecules. Proteasome-dependent epitope processing is greatly improved through the interferon-γ-induced formation of immunoproteasomes and the activator complex PA28. Tripeptidyl aminopeptidase II also has a strong effect on epitope generation. With its endoproteolytic and exoproteolytic activities, TPPII acts 'downstream' of the proteasome and relies on products released by the proteasome. The antigen-processing cascade involving different proteolytic systems raises anew the question of how antigenic peptides are generated. We therefore revisit the interferon-γ-induced immune adaptation of the proteasome and attempt to redefine its function in connection with the emerging importance of TPPII.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The proteasome and antigen processing: the classical pathway.
Figure 2: Formation of immunoproteasomes.
Figure 3: The proteasome and antigen processing: substrate hopping and the dual-proteasome model.

Similar content being viewed by others

References

  1. Rock, K.L., York, I.A. & Goldberg, A.L. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat. Immunol. 4, 670–677 (2004).

    Article  CAS  Google Scholar 

  2. York, L.A., Goldberg, A.L., Mo, X.Y. & Rock, K.L. Proteolysis and class I major histocompatibility complex antigen presentation. Immunol. Rev. 172, 29–48 (1999).

    Article  Google Scholar 

  3. Rock, L.K., York, I.A., Saric, T. & Goldberg, A.L. Protein degradation and the generation of MHC class I-presented peptides. Adv. Immunol. 80, 1–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Falk, K., Rötschke, O., Stevanovic, S., Jung, G. & Rammensee, H.G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Ortmann, B. et al. A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science 277, 1306–1309 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Kloetzel, P.M. Antigen processing by the proteasome. Nat. Rev. Mol. Cell. Biol. 2, 179–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Beninga, J., Rock, K.L. & Goldberg, A.L. Interferon-γ can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. J. Biol. Chem. 273, 18734–18742 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Stoltze, L. et al. Two new proteases in the MHC class I processing pathway. Nat. Immunol. 1, 413–418 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. York, I.A. et al. The cytosolic endopeptidase, thimet oligopeptidase, destroys antigenic peptides and limits the extent of MHC class I antigen presentation. Immunity 3, 429–440 (2003).

    Article  Google Scholar 

  10. Saric, T. et al. Major histocompatibility complex class I-presented antigenic peptides are degraded in cytosolic extracts primarily by thimet oligopeptidase. J. Biol. Chem. 276, 36474–36481 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Geier, E. et al. A giant protease with potential to substitute for some functions of the proteasome. Science 283, 978–981 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Seifert, U.V. An essential role for tripeptidyl peptidase in the generation of an MHC class I epitope. Nat. Immunol. 4, 375–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–483 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Saric, T. et al. An IFN-γ-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat. Immunol. 12, 1169–1176 (2002).

    Article  CAS  Google Scholar 

  15. Tanioka, T. et al. Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamiliy of aminopeptidases. J. Biol. Chem. 278, 32275–32283 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Fruci, D., Niedermann, G., Butler, R.H. & van Endert, P. Efficient MHC class I-independent amino-terminal trimming of epitope precursor peptides in the endoplasmic reticulum. Immunity 15, 467–476 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Glickman, M.H. & Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428 (1998).

    Article  Google Scholar 

  18. Voges, D., Zwickl, P. & Baumeister, W. The 26S proteasome: A molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015–1068 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–741 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Groll, M. et al. A gated channel into the proteasome core particle. Nat. Struct. Biol. 7, 1062–1067 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Orlowski, M., Cardozo, C. & Michaud, C. Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry 32, 1563–1572 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Eleuteri, A.M., Kohanski, R.A., Cardozo, C. & Orlowski, M. Bovine spleen multicatalytic proteinase complex (proteasome): replacement of X, Y, and Z subunits by LMP7, LMP2 and MECL1 and changes in properties and specificity. J. Biol. Chem. 272, 11824–11831 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Kisselev, A.F. et al. The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J. Biol. Chem. 278, 35869–35877 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Nussbaum, A.K. et al. Cleavage motifs of the yeast proteasome β subunits deduced from digests of enolase 1. Proc. Natl. Acad. Sci. USA 95, 12504–12509 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Köhler, A. et al. The axial channel of the proteasome core particle is gated by the rpt2 ATPase and controls both substrate entry and product release. Mol. Cell 7, 1143–1152 (2001).

    Article  PubMed  Google Scholar 

  26. Knowlton, J.R. et al. Structure of the proteasome activator REGα (PA28α). Nature 390, 639–643 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Wheatley, D., Grisola, S. & Hernandez-Yago, J. Significance of rapid degradation of newly synthesized proteins in mammalian cells: A working hypothesis. J. Theor. Biol. 98, 283–300 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404, 770–774 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Reits, E.A., Vos, J.C., Gromme, M. & Neefjes, J. The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404, 774–778 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Princiotta, M.F. et al. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 3, 343–354 (2003).

    Article  Google Scholar 

  31. Yewdell, J.W., Reits, E. & Neefjes, J. Making sense of mass destruction: Quantitating MHC class I antigen presentation. Nat. Rev. Immunol. 3, 952–961 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Kisselev, A.F., Akopian, T.N., Woo, K.M. & Goldberg, A.F. The sizes of peptides generated from protein by mammalian 26 and 20S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem. 274, 3363–3371 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Rock, K.L. et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Cerundolo, V. et al. The proteasome-specific inhibitor lactacystin blocks presentation of cytotoxic T lymphocyte epitopes in human and murine cells. Eur. J. Immunol. 27, 336–341 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Sijts, A. et al. MHC class I antigen processing of an adenovirus CTL epitope is linked to the levels of immunoproteasomes in infected cells. J. Immunol. 164, 4500–4560 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Eggers, M. et al. The cleavage preference of the proteasome governs the yield of antigenic peptides. J. Exp. Med. 182, 1865–1870 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Benham, A.M., Gromme, M. & Neefjes, J. Allelic differences in the relationship between proteasome activity and MHC class I peptide loading. J. Immunol. 161, 83–89 (1998).

    CAS  PubMed  Google Scholar 

  38. Choppin, J. et al. Characteristics of HIV-1 Nef regions containing multiple CD8+ T cell epitopes: wealth of HLA-binding motifs and sensitivity to proteasome degradation. J. Immunol. 166, 6164–6169 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Driscoll, J., Brown, M.G., Finley, D. & Monaco, J.J. MHC linked LMP products specifically alter peptidase activities of the proteasome. Nature 365, 262–264 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Ortiz-Navarette, V. et al. Subunit of the 20S proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex. Nature 353, 662–664 (1991).

    Article  Google Scholar 

  41. Cerundolo, V., Kelly, A., Elliott, T., Trowsdale, J. & Townsend, A. Genes encoded in the major histocompatibility complex affecting the generation of peptides for TAP transport. Eur. J. Immunol. 25, 554–562 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Glynne, R. et al. A proteasome related gene between the two ABC transporter loci in the class II region of the human MHC. Nature 353, 357–360 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Cruz, M., Elenich, L.A., Smolarek, T.A., Menon, A.G. & Monaco, J.J. DNA sequence, chromosomal localization, and tissue expression of the mouse proteasome subunit LMP10 (Psmb10) gene. Genomics 45, 618–622 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Aki, M. et al. Interferon-γ induces different subunit organizations and functional diversity of proteasomes. J. Biochem. 115, 257–269 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Griffin, T.A. et al. Immunoproteasome assembly: cooperative incorporation of interferon γ (IFN-γ)-inducible subunits. J. Exp. Med. 187, 97–104 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Groettrup, M., Standera, S., Stohwasser, R. & Kloetzel, P.M. The subunits MECL-1 and LMP2 are mutually required for incorporation into the 20S proteasome. Proc. Natl. Acad. Sci. USA 94, 8970–8975 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Nandi, D., Woodward, E., Ginsburg, D.B. & Monaco, J.J. Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor subunits. EMBO J. 16, 5363–5375 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Witt, E. et al. Characterization of the newly identified human Ump1 homologue POMP and analysis of LMP7 (β5i) incorporation into 20S proteasomes. J. Mol. Biol. 301, 1–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Burri, L. et al. Identification and characterization of a mammalian protein interacting with 20S proteasome precursors. Proc. Natl. Acad. Sci. USA 97, 10348–10353 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Dubiel, W., Pratt, G., Ferrell, K. & Rechsteiner, M. Purification of a 11S regulator of the multicatlytic proteinase. J. Biol. Chem. 267, 22377–22369 (1992).

    Google Scholar 

  51. Soza, A. et al. Expression and subcellular localization of mouse 20S proteasome activator complex PA28. FEBS Lett. 413, 27–34 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Murata, S. et al. Immunoproteasome assembly and antigen presentation in mice lacking both PA28α and PA28β. EMBO J. 20, 5898–5907 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Preckel, T. et al. Impaired immunoproteasome assembly and immune response in PA28−/− mice. Science 286, 2162–2165 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Dick, T.P. et al. Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 86, 253–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Shimbara, N. et al. Double cleavage production of the CTL epitope by proteasomes and PA28: role of the flanking region. Genes Cells 2, 785–800 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Groettrup, M. et al. A role for the proteasome regulator PA28α in antigen presentation. Nature 381, 166–168 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Bose, S., Stratford, F.L., Broadfoot, K.I., Mason, G.G. & Rivett, A.J. Phosphorylation of 20S proteasome α subunit C8 (α7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by γ-interferon. Biochem. J. 378, 177–184 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gacynska, M., Rock, K.L. & Goldberg, A.L. Gamma interferon and expression of MHC genes regulate peptide hydrolysis. Nature 363, 262–264 (1993).

    Google Scholar 

  59. Toes, R.E. et al. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med. 194, 1–12 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Arnold, D. et al. Proteasome subunits encoded in the MHC are not generally required for the processing of peptides bound by MHC class I molecules. Nature 360, 171–174 (1993).

    Article  Google Scholar 

  61. Momburg, F. et al. Proteasome subunits encoded by the major histocompatibility complex are not essential for antigen presentation. Nature 360, 174–177 (1993).

    Article  Google Scholar 

  62. Yewdell, J., Lapham, C., Bacik, I., Spies, T. & Bennink, J. MHC-encoded proteasome subunits LMP2 and LMP7 are not required for efficient antigen presentation. J. Immunol. 152, 1163–1170 (1994).

    CAS  PubMed  Google Scholar 

  63. Sibille, C. et al. LMP2+ proteasomes are required for the presentation of specific antigens to cytotoxic T lymphocytes. Curr. Biol. 5, 923–930 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Sijts, A. et al. Structural features of immunoproteasomes determine the efficient generation of a viral CTL epitope. J. Exp. Med. 191, 503–513 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gileadi, U. et al. Generation of an immunodominant CTL epitope is affected by proteasome subunit composition and stability of the antigenic protein. J. Immunol. 163, 6045–6052 (1999).

    CAS  PubMed  Google Scholar 

  66. van Hall, T. et al. Differential influence on CTL epitope presentation by controlled expression of either proteasome immuno-subunits or PA28. J. Exp. Med. 192, 483–492 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schwarz, K. et al. Overexpression of the proteasome subunits LMP2, LMP7 and MECL-1 but not PA28α/β enhances the presentation of an immunodominant lymphocyte choriomeningitis virus T cell epitope. J. Immunol. 165, 768–778 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Van Kaer, L. et al. Altered peptidase and viral-specific T cell response in LMP2 mutant mice. Immunity 1, 533–541 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Boes, B. et al. IFN-γ stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes. J. Exp. Med. 179, 901–909 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Kuckelkorn, U. et al. Incorporation of major histocompatibility complex encoded subunits LMP2 and LMP7 changes the quality of the 20S proteasome polypeptide processing products independent of interferon-γ. Eur. J. Immunol. 25, 2605–2611 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Emmerich, N.P. et al. The human 26S and 20S proteasomes generate overlapping but different sets of peptide fragments from a model protein substrate. J. Biol. Chem. 275, 21140–21148 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Morel, S. et al. Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 12, 107–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Van den Eynde, B.J. & Morel, S. Differential processing of class I restricted epitope by the standard proteasome and immunoproteasome. Curr. Opin. Immunol. 13, 147–153 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Sun, Y. et al. Expression of the proteasome activator PA28 rescues the presentation of a cytotoxic T lymphocyte epitope on melanoma cells. Cancer Res. 62, 2875–2882 (2002).

    CAS  PubMed  Google Scholar 

  75. Cascio, P., Hiltton, C., Kisselev, A.F., Rock, L. & Goldberg, A.L. 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. EMBO J. 20, 2357–2366 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Peters, B., Janek, K., Kuckelkorn, U. & Holzhütter, H.G. Assessment of proteasomal cleavage probabilities from kinetic analysis of time-dependent product formation. J. Mol. Biol. 318, 847–862 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Cascio, P., Call, M., Petre, B.M., Walz, T. & Goldberg, A.L. Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J. 21, 2636–2645 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Knuehl, C. et al. The murine cytomegalovirus pp89 immunodominant H-2Ld epitope is generated and translocated into the endoplasmic reticulum as an 11-mer precursor peptide. J. Immunol. 167, 1515–1521 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Kahn, S. et al. Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver. J. Immunol. 167, 6859–6868 (2001).

    Article  Google Scholar 

  80. Kuckelkorn, U. et al. Link between organ-specific antigen processing by 20S proteasomes and CD8+ T cell-mediated autoimmunity. J. Exp. Med. 195, 983–990 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Macagno, A. et al. Dendritic cells up-regulate immunoproteasomes and the proteasome regulator PA28 during maturation. Eur. J. Immunol. 29, 4037–4042 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Kisselev, A.F., Kaganovich, D. & Goldberg, A.L. Binding of hydrophobic peptides to several non-catalytic sites promotes peptide hydrolysis by all active sites of 20 S proteasomes. Evidence for peptide-induced channel opening in the α-rings. J. Biol. Chem. 277, 22260–22670 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Tanahashi, N. et al. Hybrid proteasomes: Induction by interferon-γ and contribution to ATP-dependent proteolysis. J. Biol. Chem. 275, 14336–14345 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Yamano, T. et al. Two distinct pathways mediated by PA28 and hsp90 in major histocompatibility complex class I antigen processing. J. Exp. Med. 196, 185–196 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, J. et al. Lysine 188 substitutions convert the pattern of proteasome activation by REGγ to that of REGs α and β. EMBO J. 20, 3359–3369 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stohwasser, R., Salzmann, U., Giesebrecht, J., Kloetzel, P.M. & Holzhütter, H.G. Kinetic evidences for facilitation of peptide channelling by the proteasome activator PA28. Eur. J. Biochem. 276, 6221–6229 (2000).

    Article  Google Scholar 

  87. Whitby, F.G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Kopp, F., Dahlmann, B. & Kuehn, L. Reconstitution of hybrid proteasomes from purified PA700-20 S complexes and PA28α/β activator: ultrastructure and peptidase activities. J. Mol. Biol. 313, 465–471 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Zaiss, D.M., Standera, S., Holzhuetter, H., Kloetzel, P. & Sijts, A.J. The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes. FEBS Lett. 457, 333–338 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. McCutchen-Maloney, S.L. et al. cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J. Biol. Chem. 275, 18557–18565 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Zaiss, D., Standera, S., Kloetzel, P.M. & Sijts, A. PI31 is a modulator of proteasome formation and antigen processing. Proc. Natl. Acad. Sci. USA 99, 1169–1176 (2002).

    Article  CAS  Google Scholar 

  92. Tomkinson, B., Wernstedt, C., Hellman, U. & Zetterqvist, O. Active site of tripeptidyl peptidase II from human erythrocytes is of the subtilisin type. Proc. Natl. Acad. Sci. USA 84, 7508–7512 (1987).

    Article  CAS  PubMed  Google Scholar 

  93. Tomkinson, B. Tripeptidyl peptidases: enzymes that count. Trends Biochem. Sci. 24, 35–359 (1999).

    Article  Google Scholar 

  94. Lévy, F. et al. The final N-terminal trimming of a subaminoterminal proline-containing HLA class I restricted antigenic peptide in the cytosol is mediated by two peptidases. J. Immunol. 169, 4161–4171 (2002).

    Article  PubMed  Google Scholar 

  95. Reits, E. et al. A role for TPPII in trimming proteasomal degradation products for MHC Class I antigen presentation. Immunity 20, 495–506 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, E.W. et al. Integration of the ubiquitin-proteasome pathway with a cytosolic oligopeptidase activity. Proc. Natl. Acad. Sci. USA 97, 9990–9995 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Rape, M. & Jentsch, S. Taking a bite: proteasomal protein processing. Nat. Cell Biol. 4, E113–E116 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Palombella, V.J., Rando, O.J., Goldberg, A.L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 8, 773–785 (1994).

    Article  Google Scholar 

  99. Zhang, S., Skalsky, Y. & Garfinkel, D.J. MGA2 or SPT23 is required for transcription of the Δ9 fatty acid desaturase gene, OLE1, and nuclear membrane integrity in Saccharomyces cerevisiae. Genetics 151, 473–483 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Cardozo, C. & Michaud, C. Proteasome degradation of Tau proteins occurs independently of the chymotrypsin-like activity by a non-processive pathway. Arch. Biochem. Biophys. 408, 103–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, R., Chait, B., Wolf, R., Kohanski, C. & Cardozo, C. Lysozyme degradation by the bovine multicatalytic proteinase complex (proteasome):evidence for a nonprocessive mode of degradation. Biochemistry 38, 14573–14581 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Reits, E. et al. Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity 18, 97–108 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kloetzel, P. Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat Immunol 5, 661–669 (2004). https://doi.org/10.1038/ni1090

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1090

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing