Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Critical functions for c-Myb at three checkpoints during thymocyte development

Abstract

The transcription factor c-Myb is expressed throughout T cell development in the thymus. However, little is understood about c-Myb function because of the embryonic lethality of traditional Myb-null mutations. Using tissue-specific deletion to abrogate c-Myb expression at distinct stages of T cell development, we identify three points at which c-Myb activity is required for normal T cell differentiation: transition through the double-negative 3 stage, survival of preselection CD4+CD8+ thymocytes, and differentiation of CD4 thymocytes. Thus, c-Myb is essential at several stages during T cell development in the thymus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Myb mRNA in the thymus and conditional targeting of the mouse Myb locus.
Figure 2: Tissue- and differentiation-specific deletion of the mouse Myb locus.
Figure 3: Impaired thymocyte development in Mybf/d LckCre and Mybf/f cwLckCre mice.
Figure 4: Differentiation and proliferation but decreased intracellular TCRβ expression in c-Myb-deficient DN3 thymocytes.
Figure 5: Inefficient V(D)J recombination at the Tcrb locus in c-Myb-deficient DN3 thymocytes.
Figure 6: c-Myb is required for DP thymocyte survival and is more important for differentiation of CD4 SP than CD8 SP cells.
Figure 7: Decreased Vα→Jα rearrangement at the Tcra locus in c-Myb-deficient DP thymocytes.

Similar content being viewed by others

References

  1. Fehling, H.J., Gilfillan, S. & Ceredig, R. αβ/γδ lineage commitment in the thymus of normal and genetically manipulated mice. Adv. Immunol. 71, 1–76 (1999).

    CAS  PubMed  Google Scholar 

  2. Godfrey, D.I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3CD4CD8 triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252 (1993).

    CAS  PubMed  Google Scholar 

  3. Guidos, C.J., Weissman, I.L. & Adkins, B. Intrathymic maturation of murine T lymphocytes from CD8+ precursors. Proc. Natl. Acad. Sci. USA 86, 7542–7546 (1989).

    Article  CAS  Google Scholar 

  4. von Boehmer, H. et al. Pleiotropic changes controlled by the pre-T-cell receptor. Curr. Opin. Immunol. 11, 135–142 (1999).

    Article  CAS  Google Scholar 

  5. Germain, R.N. T-cell development and the CD4-CD8 lineage decision. Nat. Rev. Immunol. 2, 309–322 (2002).

    Article  CAS  Google Scholar 

  6. Oh, I.H. & Reddy, E.P. The myb gene family in cell growth, differentiation and apoptosis. Oncogene 18, 3017–3033 (1999).

    Article  CAS  Google Scholar 

  7. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 404, 193–197 (2000).

    Article  CAS  Google Scholar 

  8. Westin, E.H. et al. Differential expression of the amv gene in human hematopoietic cells. Proc. Natl. Acad. Sci. USA 79, 2194–2198 (1982).

    Article  CAS  Google Scholar 

  9. Mucenski, M.L. et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65, 677–689 (1991).

    Article  CAS  Google Scholar 

  10. Ess, K.C., Witte, D.P., Bascomb, C.P. & Aronow, B.J. Diverse developing mouse lineages exhibit high-level c-Myb expression in immature cells and loss of expression upon differentiation. Oncogene 18, 1103–1111 (1999).

    Article  CAS  Google Scholar 

  11. Stern, J.B. & Smith, K.A. Interleukin-2 induction of T-cell G1 progression and c-myb expression. Science 233, 203–206 (1986).

    Article  CAS  Google Scholar 

  12. Allen, R.D., Bender, T.P. & Siu, G. c-Myb is essential for T cell development. Genes Dev. 13, 1073–1078 (1999).

    Article  CAS  Google Scholar 

  13. Bender, T.P., Thompson, C.B. & Kuehl, W.M. Differential expression of c-myb mRNA in murine B lymphomas by a block to transcription elongation. Science 237, 1473–1476 (1987).

    Article  CAS  Google Scholar 

  14. Torres, R.M. & Kuhn, R. Laboratory Protocols for Conditional Gene Targeting (Oxford University Press, 1997).

    Google Scholar 

  15. Lavu, S. & Reddy, E.P. Structural organization and nucleotide sequence of mouse c-myb oncogene: activation in ABPL tumors is due to viral integration in an intron which results in the deletion of the 5′ coding sequences. Nucleic Acids Res. 14, 5309–5320 (1986).

    Article  CAS  Google Scholar 

  16. Jacobs, S.M., Gorse, K.M. & Westin, E.H. Identification of a second promoter in the human c-myb proto-oncogene. Oncogene 9, 227–235 (1994).

    CAS  PubMed  Google Scholar 

  17. Hennet, T., Hagen, F.K., Tabak, L.A. & Marth, J.D. T-cell-specific deletion of a polypeptide N-acetylgalactosaminyl-transferase gene by site-directed recombination. Proc. Natl. Acad. Sci. USA 92, 12070–12074 (1995).

    Article  CAS  Google Scholar 

  18. Lee, P.P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity. 15, 763–774 (2001).

    Article  CAS  Google Scholar 

  19. Luscher, B. & Eisenman, R.N. c-myc and c-myb protein degradation: effect of metabolic inhibitors and heat shock. Mol. Cell. Biol. 8, 2504–2512 (1988).

    Article  CAS  Google Scholar 

  20. McMurry, M.T., Hernandez-Munain, C., Lauzurica, P. & Krangel, M.S. Enhancer control of local accessibility to V(D)J recombinase. Mol. Cell. Biol. 17, 4553–4561 (1997).

    Article  CAS  Google Scholar 

  21. Hsiang, H.H., Goldman, J.P. & Raulet, D.H. The role of c-Myb or a related factor in regulating the T cell receptor γ gene enhancer. J. Immunol. 154, 5195–5204 (1995).

    CAS  PubMed  Google Scholar 

  22. Penit, C., Lucas, B. & Vasseur, F. Cell expansion and growth arrest phases during the transition from precursor (CD48) to immature (CD4+8+) thymocytes in normal and genetically modified mice. J. Immunol. 154, 5103–5113 (1995).

    CAS  PubMed  Google Scholar 

  23. Sleckman, B.P., Gorman, J.R. & Alt, F.W. Accessibility control of antigen-receptor variable-region gene assembly: role of cis-acting elements. Ann. Rev. Immunol. 14, 459–481 (1996).

    Article  CAS  Google Scholar 

  24. Reizis, B. & Leder, P. The upstream enhancer is necessary and sufficient for the expression of the pre-T cell receptor α gene in immature T lymphocytes. J. Exp. Med. 194, 979–990 (2001).

    Article  CAS  Google Scholar 

  25. Shinkai, Y. & Alt, F.W. CD3 epsilon-mediated signals rescue the development of CD4+CD8+ thymocytes in RAG-2−/− mice in the absence of TCR β chain expression. Int. Immunol. 6, 995–1001 (1994).

    Article  CAS  Google Scholar 

  26. Sun, Z. et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science. 288, 2369–2373 (2000).

    Article  CAS  Google Scholar 

  27. Gartner, F. et al. Immature thymocytes employ distinct signaling pathways for allelic exclusion versus differentiation and expansion. Immunity. 10, 537–546 (1999).

    Article  CAS  Google Scholar 

  28. Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell. Biol. 76, 34–40 (1998).

    Article  CAS  Google Scholar 

  29. Bluthmann, H. et al. T-cell-specific deletion of T-cell receptor transgenes allows functional rearrangement of endogenous α- and β-genes. Nature 334, 156–159 (1988).

    Article  CAS  Google Scholar 

  30. Huesmann, M., Scott, B., Kisielow, P. & von Boehmer, H. Kinetics and efficacy of positive selection in the thymus of normal and T cell receptor transgenic mice. Cell 66, 533–540 (1991).

    Article  CAS  Google Scholar 

  31. Anderson, S.J., Abraham, K.M., Nakayama, T., Singer, A. & Perlmutter, R.M. Inhibition of T-cell receptor β-chain gene rearrangement by overexpression of the non-receptor protein tyrosine kinase p56lck. EMBO J. 11, 4877–4886 (1992).

    Article  CAS  Google Scholar 

  32. Pearson, R. & Weston, K. c-Myb regulates the proliferation of immature thymocytes following β-selection. EMBO J. 19, 6112–6120 (2000).

    Article  CAS  Google Scholar 

  33. Wang, Q.F., Lauring, J. & Schlissel, M.S. c-Myb binds to a sequence in the proximal region of the RAG-2 promoter and is essential for promoter activity in T-lineage cells. Mol. Cell. Biol. 20, 9203–9211 (2000).

    Article  CAS  Google Scholar 

  34. Chen, F., Rowen, L., Hood, L. & Rothenberg, E.V. Differential transcriptional regulation of individual TCR Vβ segments before gene rearrangement. J. Immunol. 166, 1771–1780 (2001).

    Article  CAS  Google Scholar 

  35. Krangel, M.S. Gene segment selection in V(D)J recombination: accessibility and beyond. Nat. Immunol. 4, 624–630 (2003).

    Article  CAS  Google Scholar 

  36. McClinton, D., Stafford, J., Brents, L., Bender, T.P. & Kuehl, W.M. Differentiation of mouse erythroleukemia cells is blocked by late up-regulation of a c-myb transgene. Mol. Cell. Biol. 10, 705–710 (1990).

    Article  CAS  Google Scholar 

  37. Gonda, T.J. & Metcalf, D. Expression of myb, myc and fos proto-oncogenes during the differentiation of a murine myeloid leukaemia. Nature 310, 249–251 (1984).

    Article  CAS  Google Scholar 

  38. Taylor, D., Badiani, P. & Weston, K. A dominant interfering Myb mutant causes apoptosis in T cells. Genes Dev. 10, 2732–2744 (1996).

    Article  CAS  Google Scholar 

  39. Ma, A. et al. Bclx regulates the survival of double-positive thymocytes. Proc. Natl. Acad. Sci. USA 92, 4763–4767 (1995).

    Article  CAS  Google Scholar 

  40. Guo, J. et al. Regulation of the TCRα repertoire by the survival window of CD4+CD8+ thymocytes. Nat. Immunol. 3, 469–476 (2002).

    Article  Google Scholar 

  41. Siu, G., Wurster, A.L., Lipsick, J.S. & Hedrick, S.M. Expression of the CD4 gene requires a Myb transcription factor. Mol. Cell. Biol. 12, 1592–1604 (1992).

    Article  CAS  Google Scholar 

  42. Allen, R.D., III, Kim, H.K., Sarafova, S.D. & Siu, G. Negative regulation of CD4 gene expression by a HES-1-c-Myb complex. Mol. Cell. Biol. 21, 3071–3082 (2001).

    Article  CAS  Google Scholar 

  43. Luscher, B., Christenson, E., Litchfield, D.W., Krebs, E.G. & Eisenman, R.N. Myb DNA binding inhibited by phosphorylation at a site deleted during oncogenic activation. Nature 344, 517–522 (1990).

    Article  CAS  Google Scholar 

  44. Miglarese, M.R., Richardson, A.F., Aziz, N. & Bender, T.P. Differential regulation of c-Myb-induced transcription activation by a phosphorylation site in the negative regulatory domain. J. Biol. Chem. 271, 22697–22705 (1996).

    Article  CAS  Google Scholar 

  45. Ramsay, R.G. et al. Regulation of c-Myb through protein phosphorylation and leucine zipper interactions. Oncogene 11, 2113–2120 (1995).

    CAS  PubMed  Google Scholar 

  46. Emambokus, N. et al. Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J. 22, 4478–4488 (2003).

    Article  CAS  Google Scholar 

  47. Zhang, L., Camerini, V., Bender, T.P. & Ravichandran, K.S. A nonredundant role for the adapter protein Shc in thymic T cell development. Nat. Immunol. 3, 749–755 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Roth (University of Cologne, Cologne, Germany) for doing the blastocyst injections; C. Goettlinger (University of Cologne) and J. Lannigan (University of Virginia, Charlottesville, Virginia) for help with cell sorting; and M. McDuffie, V. Engelhard, U. Lorenz and K. Ravichandran for critical review of the manuscript. Supported by National Institutes of Health (CA85842 to T.P.B.), Fogarty International Center (TW02297 to T.P.B.), Deutsche Forschungsgemeinschaft (SFB 243 to K.R.) and the European Union (BIO4-CT96-0077 to K.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy P Bender.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Expression of c-Myb protein in Mybf/f lckCre thymocytes. (PDF 169 kb)

Supplementary Fig. 2

Semi-quantitative RT-PCR analysis of Rag1 and Rag2 expression in c-Myb-deficient thymocytes. (PDF 232 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bender, T., Kremer, C., Kraus, M. et al. Critical functions for c-Myb at three checkpoints during thymocyte development. Nat Immunol 5, 721–729 (2004). https://doi.org/10.1038/ni1085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1085

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing