Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD8+ T cells maintain tolerance to myelin basic protein by 'epitope theft'

Abstract

Myelin basic protein–specific CD8+ T cells can induce central nervous system autoimmunity; however, immune tolerance prevents these autoreactive cells from causing disease. To define the mechanisms that mediate tolerance, we developed two T cell receptor–transgenic mouse lines with different affinities for the H-2Kk-restricted myelin basic protein epitope consisting of amino acids 79–87 (MBP(79–87)). We observed both thymic deletion and peripheral tolerance in the lower-affinity T cells. The higher-affinity T cells, however, showed no evidence of tolerance induction and were able to prevent tolerance of the lower-affinity T cells by removing H-2Kk–MBP(79–87) complexes from antigen-presenting cells without proliferating. This form of immune regulation could limit responses of self-reactive T cells that escape other tolerance mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Central tolerance in 8.6 TCR-transgenic mice.
Figure 2: Peripheral tolerance in 8.6 TCR-transgenic mice.
Figure 3: The 8.8 T cells are not deleted in the thymus or periphery.
Figure 4: The 8.8 T cells are hyporesponsive to MBP in vivo despite showing higher affinity for H-2Kk–MBP(79–87) in vitro than do 8.6 T cells.
Figure 5: The 8.8 T cells rescue 8.6 T cells from tolerance in mixed BMC.
Figure 6: Inhibitory activity of 8.8 T cells is epitope specific.
Figure 7: The 8.8 T cells inhibit proliferation of 8.6 T cells by acting on DCs.

Similar content being viewed by others

References

  1. Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    Article  CAS  Google Scholar 

  2. Walker, L.S. & Abbas, A.K. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat. Rev. Immunol. 2, 11–19 (2002).

    Article  CAS  Google Scholar 

  3. Steinman, L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85, 299–302 (1996).

    Article  CAS  Google Scholar 

  4. Martin, R. & McFarland, H.F. in Multiple Sclerosis: Clinical and Pathogenetic Basis (eds. Raine, C..S., McFarland, H.F. & Tourtellotte, W.W.) 221–242 (Chapman and Hall, London, 1997).

    Google Scholar 

  5. Hellings, N., Raus, J. & Stinissen, P. Insights into the immunopathogenesis of multiple sclerosis. Immunol. Res. 25, 27–51 (2002).

    Article  CAS  Google Scholar 

  6. Martin, R. & McFarland, H.F. Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit. Rev. Clin. Lab. Sci. 321, 121–182 (1995).

    Article  Google Scholar 

  7. Zamvil, S.S. & Steinman, L. The T lymphocyte in experimental allergic encephalomyelitis. Annu. Rev. Immunol. 8, 579–621 (1990).

    Article  CAS  Google Scholar 

  8. Gay, F.W., Drye, T.J., Dick, G.W. & Esiri, M.M. The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. Identification and characterization of the primary demyelinating lesion. Brain 120, 1461–1483 (1997).

    Article  Google Scholar 

  9. Babbe, H. et al. Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 192, 393–404 (2000).

    Article  CAS  Google Scholar 

  10. Jacobsen, M. et al. Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 125, 538–550 (2002).

    Article  Google Scholar 

  11. Lemke, G. Unwrapping the genes of myelin. Neuron 1, 535–543 (1988).

    Article  CAS  Google Scholar 

  12. Jurewicz, A., Biddison, W.E. & Antel, J.P. MHC class I-restricted lysis of human oligodendrocytes by myelin basic protein peptide-specific CD8 T lymphocytes. J. Immunol. 160, 3056–3059 (1998).

    CAS  PubMed  Google Scholar 

  13. Huseby, E.S., Ohlen, C. & Goverman, J. Cutting edge: myelin basic protein-specific cytotoxic T cell tolerance is maintained in vivo by a single dominant epitope in H-2k mice. J. Immunol. 163, 1115–1118 (1999).

    CAS  PubMed  Google Scholar 

  14. Huseby, E.S. et al. A pathogenic role for myelin-specific CD8+ T cells in a model for multiple sclerosis. J. Exp. Med. 194, 669–676 (2001).

    Article  CAS  Google Scholar 

  15. de Ferra, F. et al. Alternative splicing accounts for the four forms of myelin basic protein. Cell 43, 721–727 (1985).

    Article  CAS  Google Scholar 

  16. Campagnoni, A.T. et al. Structure and developmental regulation of Golli-mbp, a 105-kilobase gene that encompasses the myelin basic protein gene and is expressed in cells in the oligodendrocyte lineage in the brain. J. Biol. Chem. 268, 4930–4938 (1993).

    CAS  PubMed  Google Scholar 

  17. Mathisen, P.M., Pease, S., Garvey, J., Hood, L. & Readhead, C. Identification of an embryonic isoform of myelin basic protein that is expressed widely in the mouse embryo. Proc. Natl. Acad. Sci. USA 90, 10125–10129 (1993).

    Article  CAS  Google Scholar 

  18. Grima, B., Zelenika, D. & Pessac, B. A novel transcript overlapping the myelin basic protein gene. J. Neurochem. 59, 2318–2323 (1992).

    Article  CAS  Google Scholar 

  19. Zelenika, D., Grima, B. & Pessac, B. A new family of transcripts of the myelin basic protein gene: expression in brain and in immune system. J. Neurochem. 60, 1574–1577 (1993).

    Article  CAS  Google Scholar 

  20. Givogri, M.I., Bongarzone, E.R. & Campagnoni, A.T. New insights on the biology of myelin basic protein gene: the neural-immune connection. J. Neurosci. Res. 59, 153–159 (2000).

    Article  CAS  Google Scholar 

  21. Huseby, E.S., Sather, B., Huseby, P.G. & Goverman, J. Age-dependent T cell tolerance and autoimmunity to myelin basic protein. Immunity 14, 471–481 (2001).

    Article  CAS  Google Scholar 

  22. Feng, J.M. et al. Thymocytes express the golli products of the myelin basic protein gene and levels of expression are stage dependent. J. Immunol. 165, 5443–5450 (2000).

    Article  CAS  Google Scholar 

  23. Roach, A., Takahashi, N., Pravtcheva, D., Ruddle, F. & Hood, L. Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in shiverer mutant mice. Cell 42, 149–155 (1985).

    Article  CAS  Google Scholar 

  24. MacDonald, H.R., Budd, R.C. & Howe, R.C. A CD3-subset of CD48+ thymocytes: a rapidly cycling intermediate in the generation of CD4+8+ cells. Eur. J. Immunol. 18, 519–523 (1988).

    Article  CAS  Google Scholar 

  25. Nikolic-Zugic, J., Moore, M.W. & Bevan, M.J. Characterization of the subset of immature thymocytes which can undergo rapid in vitro differentiation. Eur. J. Immunol. 19, 649–653 (1989).

    Article  CAS  Google Scholar 

  26. Shortman, K., Wilson, A., Egerton, M., Pearse, M. & Scollay, R. Immature CD4CD8+ murine thymocytes. Cell. Immunol. 113, 462–479 (1988).

    Article  CAS  Google Scholar 

  27. Kishimoto, H., Surh, C.D. & Sprent, J. A role for Fas in negative selection of thymocytes in vivo. J. Exp. Med. 187, 1427–1438 (1998).

    Article  CAS  Google Scholar 

  28. Barbarese, E., Carson, J.H. & Braun, P.E. Accumulation of the four myelin basic proteins in mouse brain during development. J. Neurochem. 31, 779–782 (1978).

    Article  CAS  Google Scholar 

  29. Voskuhl, R.R. et al. Experimental autoimmune encephalomyelitis relapses are reduced in heterozygous golli MBP knockout mice. J. Neuroimmunol. 139, 44–50 (2003).

    Article  CAS  Google Scholar 

  30. Seamons, A. et al. Competition between two MHC binding registers in a single peptide processed from myelin basic protein influences tolerance and susceptibility to autoimmunity. J. Exp. Med. 197, 1391–1397 (2003).

    Article  CAS  Google Scholar 

  31. Kisielow, P. et al. Tolerance in T-cell receptor transgenic mice involves deletion of nonmature CD4+CD8+ thymocytes. Nature 333, 742–746 (1988).

    Article  CAS  Google Scholar 

  32. Sha, W.C. et al. Positive and negative selection of an antigen receptor on T cells in transgenic mice. Nature 336, 73–76 (1988).

    Article  CAS  Google Scholar 

  33. Pircher, H., Burki, K., Lang, R., Hengartner, H. & Zinkernagel, R.M. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342, 559–561 (1989).

    Article  CAS  Google Scholar 

  34. Auphan, N. et al. Influence of antigen density on degree of clonal deletion in T cell receptor transgenic mice. Int. Immunol. 4, 541–547 (1992).

    Article  CAS  Google Scholar 

  35. Auphan, N. et al. The degree of CD8 dependence of cytolytic T cell precursors is determined by the nature of the T cell receptor (TCR) and influences negative selection in TCR-transgenic mice. Eur. J. Immunol. 24, 1572–1577 (1994).

    Article  CAS  Google Scholar 

  36. Kedl, R.M., Schaefer, B.C., Kappler, J.W. & Marrack, P. T cells down-modulate peptide-MHC complexes on APCs in vivo. Nat. Immunol. 3, 27–32 (2002).

    Article  CAS  Google Scholar 

  37. Zhumabekov, T., Corbella, P., Tolaini, M. & Kioussis, D. Improved version of a human CD2 minigene based vector for T cell-specific expression in transgenic mice. J. Immunol. Meth. 185, 133–140 (1995).

    Article  CAS  Google Scholar 

  38. Burgert, H.G., White, J., Weltzien, H.U., Marrack, P. & Kappler, J.W. Reactivity of Vβ17a+ CD8+ T cell hybrids. Analysis using a new CD8+ T cell fusion partner. J. Exp. Med. 170, 1887–1904 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Mausolf and M. Ottele for animal husbandry and technical support; A. Seamons for assistance with DC purifications; and E. Huseby for generation of cytotoxic T lymphocyte lines. We also thank T. Brabb, S. Cabbage, E. Huseby and A. Seamons for critical reading of the manuscript and discussions. Supported by National Institutes of Health (NS35126 and NS43417 to J.G.) and Public Health Service (T32 GM07270 to A.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Goverman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perchellet, A., Stromnes, I., Pang, J. et al. CD8+ T cells maintain tolerance to myelin basic protein by 'epitope theft'. Nat Immunol 5, 606–614 (2004). https://doi.org/10.1038/ni1073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing