Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MHC class Ia–restricted memory T cells inhibit expansion of a nonprotective MHC class Ib (H2-M3)–restricted memory response

Abstract

Listeria monocytogenes infection generates major histocompatibility complex (MHC) class Ia–restricted and MHC class Ib-(H2-M3)–restricted effector and memory CD8+ T cells. However, only MHC class Ia–restricted memory cells expand after rechallenge, and it is unknown if MHC class Ib–restricted memory CD8+ T cells generated by vaccination are protective. We show here that H2-M3-restricted memory CD8+ T cells were capable of secondary expansion but, in contrast to primary H2-M3-restricted effector cells, failed to provide protective immunity. In lm-immune mice, MHC class Ia–restricted memory CD8+ T cells prevented the expansion of H2-M3-restricted memory T cell populations by limiting dendritic cell antigen presentation. Thus, protective immunity by H2-M3-resricted T cells is limited to primary infection, indicating that memory MHC class Ia–restricted T cells prevent nonessential immune responses during secondary infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Priming of f-MIGWII-specific CD8+ T cells after listeria infection or immunization with peptide-coated DCs.
Figure 2: Differential protection by f-MIGWII-specific primary effector and memory CD8+ T cells.
Figure 3: Secondary effectors specific for f-MIGWII are deficient in rapid cytolysis and mainly use the CD95L-CD95 pathway.
Figure 4: Memory cell populations specific for f-MIGWII generated by listeria infection are capable of secondary expansion.
Figure 5: Regulation of MHC class Ib–restricted memory cell expansion is perforin independent.
Figure 6: Differential APC requirements for proliferation of LLO(91–99)-specific and f-MIGWII-specific memory CD8+ T cells.
Figure 7: MHC class Ia–restricted memory CD8+ T cells limit DC presentation of listeria antigens in immune mice.

Similar content being viewed by others

References

  1. Lindahl, K.F. et al. H2-M3, a full-service class Ib histocompatibility antigen. Annu. Rev. Immunol. 15, 851–879 (1997).

    Article  CAS  Google Scholar 

  2. Lenz, L.L., Dere, B. & Bevan, M.J. Identification of an H2-M3-restricted Listeria epitope: implications for antigen presentation by M3. Immunity 5, 63–72 (1996).

    Article  CAS  Google Scholar 

  3. Shawar, S.M., Cook, R.G., Rodgers, J.R. & Rich, R.R. Specialized functions of MHC class I molecules. I. An N-formyl peptide receptor is required for construction of the class I antigen Mta. J. Exp. Med. 171, 897–912 (1990).

    Article  CAS  Google Scholar 

  4. Shawar, S.M., Vyas, J.M., Rodgers, J.R., Cook, R.G. & Rich, R.R. Specialized functions of major histocompatibility complex class I molecules. II. Hmt binds N-formylated peptides of mitochondrial and prokaryotic origin. J. Exp. Med. 174, 941–944 (1991).

    Article  CAS  Google Scholar 

  5. Wang, C.R., Loveland, B.E. & Lindahl, K.F. H-2M3 encodes the MHC class I molecule presenting the maternally transmitted antigen of the mouse. Cell 66, 335–345 (1991).

    Article  CAS  Google Scholar 

  6. Kerksiek, K.M., Busch, D.H. & Pamer, E.G. Variable immunodominance hierarchies for H2-M3-restricted N-formyl peptides following bacterial infection. J. Immunol. 166, 1132–1140 (2001).

    Article  CAS  Google Scholar 

  7. Chun, T. et al. Induction of M3-restricted cytotoxic T lymphocyte responses by N-formylated peptides derived from Mycobacterium tuberculosis. J. Exp. Med. 193, 1213–1220 (2001).

    Article  CAS  Google Scholar 

  8. Berg, R.E. et al. Positive selection of an H2-M3 restricted T cell receptor. Immunity 11, 33–43 (1999).

    Article  CAS  Google Scholar 

  9. Chiu, N.M. et al. The selection of M3-restricted T cells is dependent on M3 expression and presentation of N-formylated peptides in the thymus. J. Exp. Med. 190, 1869–1878 (1999).

    Article  CAS  Google Scholar 

  10. Urdahl, K.B., Sun, J.C. & Bevan, M.J. Positive selection of MHC class Ib-restricted CD8+ T cells on hematopoietic cells. Nat. Immunol. 3, 772–779 (2002).

    Article  CAS  Google Scholar 

  11. Busch, D., Pilip, I., Vijh, S. & Pamer, E. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8, 353–362 (1998).

    Article  CAS  Google Scholar 

  12. Kerksiek, K.M., Busch, D.H., Pilip, I.M., Allen, S.E. & Pamer, E.G. H2-M3-restricted T cells in bacterial infection: rapid primary but diminished memory responses. J. Exp. Med. 190, 195–204 (1999).

    Article  CAS  Google Scholar 

  13. Kerksiek, K.M., Ploss, A., Leiner, I., Busch, D.H. & Pamer, E.G. H2-M3-restricted memory T cells: persistence and activation without expansion. J. Immunol. 170, 1862–1869 (2003).

    Article  CAS  Google Scholar 

  14. Badovinac, V.P., Porter, B.B. & Harty, J.T. Programmed contraction of CD8+ T cells after infection. Nat. Immunol. 3, 619–626 (2002).

    Article  CAS  Google Scholar 

  15. Kaufmann, S.H., Rodewald, H.R., Hug, E. & De Libero, G. Cloned Listeria monocytogenes specific non-MHC-restricted Lyt-2+ T cells with cytolytic and protective activity. J. Immunol. 140, 3173–3179 (1988).

    CAS  PubMed  Google Scholar 

  16. Lukacs, K. & Kurlander, R.J. MHC-unrestricted transfer of anti-listerial immunity by freshly isolated immune CD8 spleen cells. J. Immunol. 143, 3731–3736 (1989).

    CAS  PubMed  Google Scholar 

  17. Seaman, M.S., Wang, C.R. & Forman, J. MHC class Ib-restricted CTL provide protection against primary and secondary Listeria monocytogenes infection. J. Immunol. 165, 5192–5201 (2000).

    Article  CAS  Google Scholar 

  18. D'Orazio, S.E.F., Halme, D.G., Ploegh, H.L. & Starnbach, M.N. Class Ia MHC-deficient BALB/c mice generate CD8+ T cell-mediated protective immunity against Listeria monocytogenes infection. J. Immunol. 171, 291–298 (2003).

    Article  CAS  Google Scholar 

  19. Bouwer, H.G.A., Seaman, M.S., Forman, J. & Hinrichs, D.J. MHC class Ib-restricted cells contribute to anti-listerial immunity: evidence for Qa-1b as a key restricting element for Listeria-specific CTLs. J. Immunol. 159, 2795–2801 (1997).

    CAS  PubMed  Google Scholar 

  20. Seaman, M.S., Perarnau, B., Lindahl, K.F., Lemonnier, F.A. & Forman, J. Response to Listeria monocytogenes in mice lacking MHC class Ia molecules. J. Immunol. 162, 5429–5436 (1999).

    CAS  PubMed  Google Scholar 

  21. Rolph, M.S. & Kaufmann, S.H. Partially TAP-independent protection against Listeria monocytogenes by H2-M3-restricted CD8+ T cells. J. Immunol. 165, 4575–4580 (2000).

    Article  CAS  Google Scholar 

  22. Hamilton, S.E. & Harty, J.T. Quantitation of CD8+ T cell expansion, memory, and protective immunity after immunization with peptide-coated dendritic cells. J. Immunol. 169, 4936–4944 (2002).

    Article  Google Scholar 

  23. Harty, J.T., Tvinnereim, A.R. & White, D.W. CD8+ T cell effector mechanisms in resistance to infection. Annu. Rev. Immunol. 18, 275–308 (2000).

    Article  CAS  Google Scholar 

  24. Jensen, E.R. et al. Fas (CD95)-dependent cell-mediated immunity to Listeria monocytogenes. Infect. Immun. 66, 4143–4150 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Barber, D.L., Wherry, E.J. & Ahmed, R. Cutting edge: rapid in vivo killing by memory CD8 T cells. J. Immunol. 171, 27–31 (2003).

    Article  CAS  Google Scholar 

  26. Byers, A.M., Kemball, C.C., Moser, J.M. & Lukacher, A.E. Cutting edge: rapid in vivo CTL activity by polyoma virus-specific effector and memory CD8+ T cells. J. Immunol. 171, 17–21 (2003).

    Article  CAS  Google Scholar 

  27. White, D.W. & Harty, J.T. Perforin-deficient CD8+ T cells provide immunity to Listeria monocytogenes by a mechanism that is independent of CD95 and IFN-γ but requires TNF-α. J. Immunol. 160, 898–905 (1998).

    CAS  PubMed  Google Scholar 

  28. Russell, J.H. & Ley, T.J. Lymphocyte-mediated cytotoxicity. Ann. Rev. Immunol. 20, 323–370 (2002).

    Article  CAS  Google Scholar 

  29. Kagi, D., Ledermann, B., Buerki, K., Hengartner, H. & Zinkernagel, R.M. CD8+ T cell-mediated protection against an intracellular bacterium by perforin-dependent cytotoxicity. Eur. J. Immunol. 24, 3068–3072 (1994).

    Article  CAS  Google Scholar 

  30. San Mateo, L.R., Chua, M.M., Weiss, S.R. & Shen, H. Perforin-mediated CTL cytolysis counteracts direct cell-cell spread of Listeria monocytogenes. J. Immunol. 169, 5202–5208 (2002).

    Article  Google Scholar 

  31. Messingham, K.A.N., Badovinac, V.P. & Harty, J.T. Deficient anti-listerial immunity in the absence of perforin can be restored by increasing memory CD8+ T cell numbers. J. Immunol. 171, 4254–4262 (2003).

    Article  CAS  Google Scholar 

  32. Tawab, A., Fields, J., Chao, E. & Kurlander, R.J. Recombinant lemA without adjuvant induces extensive expansion of H2-M3-restricted CD8 effectors, which can suppress primary listeriosis in mice. Internat. Immunol. 14, 225–232 (2001).

    Article  Google Scholar 

  33. Walsh, C.M. et al. Immune function in mice lacking the perforin gene. Proc. Natl. Acad. Sci. USA 91, 10854–10858 (1994).

    Article  CAS  Google Scholar 

  34. Kaech, S.M., Wherry, E.J. & Ahmed, R. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262 (2002).

    Article  CAS  Google Scholar 

  35. Shen, H. et al. Compartmentalization of bacterial antigens: differential effects on priming of CD8 T cells and protective immunity. Cell 92, 535–545 (1998).

    Article  CAS  Google Scholar 

  36. Wong, P. & Pamer, E.G. Feedback regulation of pathogen-specific T cell priming. Immunity 18, 499–511 (2003).

    Article  CAS  Google Scholar 

  37. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  Google Scholar 

  38. Butz, E.A. & Bevan, M.J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167–175 (1998).

    Article  CAS  Google Scholar 

  39. Kedl, R.M. et al. T cells compete for access to antigen-bearing antigen-presenting cells. J. Exp. Med. 192, 1105–1113 (2000).

    Article  CAS  Google Scholar 

  40. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  Google Scholar 

  41. Migueles, S.A. et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat. Immunol. 3, 1061 (2002).

    Article  CAS  Google Scholar 

  42. Lenz, L.L. & Bevan, M.J. CTL responses to H2-M3-restricted Listeria epitopes. Immunol. Rev. 158, 115–121 (1997).

    Article  CAS  Google Scholar 

  43. Urdahl, K.B., Liggitt, D. & Bevan, M.J. CD8+ T cells accumulate in the lungs of Mycobacterium tuberculosis-infected Kb−/−Db−/− mice, but provide minimal protection. J. Immunol. 170, 1987–1994 (2003).

    Article  CAS  Google Scholar 

  44. Crowe, S.R. et al. Differential antigen presentation regulates the changing patterns of CD8+ T cell immunodominance in primary and secondary influenza virus infections. J. Exp. Med. 198, 399–410 (2003).

    Article  CAS  Google Scholar 

  45. White, D.W. et al. Perforin-deficient CD8+ T cells: in vivo priming and antigen-specific immunity against Listeria monocytogenes. J. Immunol. 162, 980–988 (1999).

    CAS  PubMed  Google Scholar 

  46. Bishop, D.K. & Hinrichs, D.J. Adoptive transfer of immunity to Listeria monocytogenes: the influence of in vitro stimulation on lymphocyte subset requirements. J. Immunol. 139, 2005–2009 (1987).

    CAS  PubMed  Google Scholar 

  47. Harty, J.T. & Bevan, M.J. Specific immunity to Listeria monocytogenes in the absence of IFN-γ. Immunity 3, 109–117 (1995).

    Article  CAS  Google Scholar 

  48. Badovinac, V.P., Tvinnereim, A.R. & Harty, J.T. Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-γ. Science 290, 1354–1358 (2000).

    Article  CAS  Google Scholar 

  49. Badovinac, V.P., Hamilton, S.E. & Harty, J.T. Viral infection results in massive CD8+ T cell expansion and mortality in vaccinated perforin-deficient mice. Immunity 18, 463–474 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Rensberger and R. Podyminogin for technical assistance; E. Pamer (Memorial Sloan Kettering, New York, New York) for TCR-transgenic mice; C.-R. Wang (University of Chicago, Chicago, Illinois) for H2-M3-specific antibody; and S. Perlman (University of Iowa, Iowa City, Iowa) for critical review of the manuscript. We also thank the National Institute of Allergy and Infectious Disease tetramer core facility for reagents. Supported by National Institutes of Health grants AI42767, AI46653, AI50073 (J.T.H.), T32AI07511 (S.E.H.), T32AI07485 (B.B.P.) and T32AI07260 (K.A.N.M.), and a Leukemia and Lymphoma Society Fellow Grant (V.P.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T Harty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, S., Porter, B., Messingham, K. et al. MHC class Ia–restricted memory T cells inhibit expansion of a nonprotective MHC class Ib (H2-M3)–restricted memory response. Nat Immunol 5, 159–168 (2004). https://doi.org/10.1038/ni1026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1026

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing