Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tolerogenic strategies to halt or prevent type 1 diabetes

Abstract

A variety of therapeutic strategies have been developed to tolerize autoreactive T cells and prevent autoimmune pathology. In terms of type 1 diabetes, prevention strategies can inhibit the priming and expansion of autoreactive T cells; however, a cure for diabetes would require tolerance to be established in the presence of primed effector cells together with replacement of the destroyed β cell mass. Replacement of β cells could be accomplished by transplantation of islets or stem cells or through islet regeneration. We will focus here on tolerogenic strategies that have been used to prevent onset of type 1 diabetes and discuss the potential for a cure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inflammatory infiltrates and their control in the diabetic pancreas.
Figure 2: A nondepleting mAb to CD4 (YTS 177) can inhibit diabetogenic T cells.
Figure 3: Differentiating progenitor cells can be identified in the pancreatic ducts of patients with chronic pancreatitis.

Similar content being viewed by others

References

  1. Egwuagu, C. E., Charukamnoetkanok, P. & Gery, I. Thymic expression of autoantigens correlates with resistance to autoimmune disease. J. Immunol. 159, 3109–3131 (1997).

    CAS  PubMed  Google Scholar 

  2. Hanahan, D. Peripheral-antigen-expressing cells in thymic medulla: factors in self-tolerance and autoimmunity. Curr. Opin. Immunol. 10, 656–662 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Parish, N. M., Rayner, D., Cooke, A. & Roitt, I. M. An investigation of the nature of induced suppression to experimental autoimmune thyroiditis. Immunology 63, 199–203 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bitar, D. M. & Whitacre, C. C. Suppression of experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. Cell. Immunol. 112, 364–370 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Heeger, P. S. et al. Revisiting tolerance induced by autoantigen in incomplete Freund's adjuvant. J. Immunol. 164, 5771–5781 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. al-Sabbagh, A., Miller, A., Santos, L. M. & Weiner, H. L. Antigen-driven tissue-specific suppression following oral tolerance: orally administered myelin basic protein suppresses proteolipid protein- induced experimental autoimmune encephalomyelitis in the SJL mouse. Eur. J. Immunol. 24, 2104–2109 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Metzler, B. W. & Wraith, D.C. Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. Int. Immunol. 5, 1159–1165 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Burrows, G. G. et al. Regulation of encephalitogenic T cells with recombinant TCR ligands. J. Immunol. 164, 6366–6371 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Salomon, B. & Bluestone, J. A. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 19, 225–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Kataoka, S. et al. Immunologic aspects of the nonobese diabetic (NOD) mouse. Abnormalities of cellular immunity. Diabetes 32, 247–253 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Nakhooda, A. F., Like, A. A., Chappel, C. I., Wei, C. N. & Marliss, E. B. The spontaneously diabetic Wistar rat (the “BB” rat). Studies prior to and during development of the overt syndrome. Diabetologia 14, 199–207 (1978).

    Article  CAS  PubMed  Google Scholar 

  12. Todd, J. A. Genetics of type 1 diabetes. Pathol. Biol. Paris 45, 219–227 (1997).

    CAS  PubMed  Google Scholar 

  13. O'Reilly, L. A. et al. Characterization of pancreatic islet cell infiltrates in NOD mice: effect of cell transfer and transgene expression. Eur. J. Immunol. 21, 1171–1180 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Miyazaki, A. et al. Predominance of T lymphocytes in pancreatic islets and spleen of pre- diabetic non-obese diabetic (NOD) mice: a longitudinal study. Clin. Exp. Immunol. 60, 622–630 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sibley, R. K., Sutherland, D. E., Goetz, F. & Michael, A. F. Recurrent diabetes mellitus in the pancreas iso- and allograft. A light and electron microscopic and immunohistochemical analysis of four cases. Lab. Invest. 53, 132–144 (1985).

    CAS  PubMed  Google Scholar 

  16. Campbell, I. L., Wong, G. H., Schrader, J. W. & Harrison, L. C. Interferon-γ enhances the expression of the major histocompatibility class I antigens on mouse pancreatic β cells. Diabetes 34, 1205–1209 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Yang, X. D. et al. Effect of tumor necrosis factor α on insulin-dependent diabetes mellitus in NOD mice. 1. The early development of autoimmunity and the diabetogenic process. J. Exp. Med. 180, 995–1004 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Mandrup-Poulsen, T. et al. Islet cytotoxicity of interleukin 1. Influence of culture conditions and islet donor characteristics. Diabetes 36, 641–647 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Corbett, J. A., Sweetland, M. A., Lancaster, J. R. Jr & McDaniel, M. L. A 1-hour pulse with IL-1 β induces formation of nitric oxide and inhibits insulin secretion by rat islets of Langerhans: evidence for a tyrosine kinase signaling mechanism. FASEB J. 7, 369–374 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Hutchings, P. & Cooke, A. Protection from insulin dependent diabetes mellitus afforded by insulin antigens in incomplete Freund's adjuvant depends on route of administration. J. Autoimmun. 11, 127–130 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Tisch, R., Wang, B. & Serreze, D. V. Induction of glutamic acid decarboxylase 65-specific Th2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent. J. Immunol. 163, 1178–1187 (1999).

    CAS  PubMed  Google Scholar 

  22. Tian, J. et al. Modulating autoimmune responses to GAD inhibits disease progression and prolongs islet graft survival in diabetes-prone mice. Nature Med. 2, 1348–1353 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Daniel, D. & Wegmann, D. R. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9-23). Proc. Natl Acad. Sci. USA 93, 956–960 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Atkinson, M. A., Maclaren, N. K. & Luchetta, R. Insulitis and diabetes in NOD mice reduced by prophylactic insulin therapy. Diabetes 39, 933–937 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Tian, J. et al. Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes. J. Exp. Med. 183, 1561–1567 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Homann, D. et al. Autoreactive CD4+ T cells protect from autoimmune diabetes via bystander suppression using the IL-4/Stat6 pathway. Immunity 11, 463–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Ehl, S. et al. Viral and bacterial infections interfere with peripheral tolerance induction and activate CD8+ T cells to cause immunopathology. J. Exp. Med. 187, 763-774 (1998).

  28. Maki, T., Ichikawa, T., Blanco, R. & Porter, J. Long-term abrogation of autoimmune diabetes in nonobese diabetic mice by immunotherapy with anti-lymphocyte serum. Proc. Natl Acad. Sci. USA 89, 3434–3438 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hutchings, P., O'Reilly, L., Parish, N. M., Waldmann, H. & Cooke, A. The use of a non-depleting anti-CD4 monoclonal antibody to re-establish tolerance to β cells in NOD mice. Eur. J. Immunol. 22, 1913–1918 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, B., Gonzalez, A., Benoist, C. & Mathis, D. The role of CD8+ T cells in the initiation of insulin-dependent diabetes mellitus. Eur. J. Immunol. 26, 1762–1769 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Parish, N. M., Bowie, L., Zusman Harach, S., Phillips, J. M. & Cooke, A. Thymus-dependent monoclonal antibody-induced protection from transferred diabetes. Eur. J. Immunol. 28, 4362–4373 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Chatenoud, L., Thervet, E., Primo, J. & Bach, J. F. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 91, 123–127 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boitard, C. et al. In vivo prevention of thyroid and pancreatic autoimmunity in the BB rat by antibody to class II major histocompatibility complex gene products. Proc. Natl Acad. Sci. USA 82, 6627–6631 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sempe, P. et al. Anti-α/β T cell receptor monoclonal antibody provides an efficient therapy for autoimmune diabetes in nonobese diabetic (NOD) mice. Eur. J. Immunol. 21, 1163–1169 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Taki, T. et al. Prevention of cyclophosphamide-induced and spontaneous diabetes in NOD/Shi/Kbe mice by anti-MHC class I Kd monoclonal antibody. Diabetes 40, 1203–1209 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Kuttler, B., Rosing, K., Lehmann, M., Brock, J. & Hahn, H. J. Prevention of autoimmune but not allogeneic destruction of grafted islets by different therapeutic strategies. J. Mol. Med. 77, 226–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Arreaza, G. A. et al. Neonatal activation of CD28 signaling overcomes T cell anergy and prevents autoimmune diabetes by an IL-4-dependent mechanism. J. Clin. Invest. 100, 2243–2253 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Molano, R. D. et al. Prolonged islet graft survival in NOD mice by blockade of the CD40- CD154 pathway of T-cell costimulation. Diabetes 50, 270–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Phillips, J. M. et al. Nondepleting anti-CD4 has an immediate action on diabetogenic effector cells, halting their destruction of pancreatic β cells. J. Immunol. 165, 1949–1955 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Hutchings, P. et al. The regulation of autoimmunity through CD4+ T cells. Autoimmunity 15, 21–23 (1993).

    Article  PubMed  Google Scholar 

  41. Qin, S. et al. “Infectious” transplantation tolerance. Science 259, 974–977 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Cobbold, S. & Waldmann, H. Infectious tolerance. Curr. Opin. Immunol. 10, 518–524 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Guo, Z. et al. Immunotherapy with nondepleting anti-CD4 monoclonal antibodies but not CD28 antagonists protects islet graft in spontaneously diabetic nod mice from autoimmune destruction and allogeneic and xenogeneic graft rejection. Transplantation 71, 1656–1665 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Chatenoud, L., Primo, J. & Bach, J. F. CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J. Immunol. 158, 2947–2954 (1997).

    CAS  PubMed  Google Scholar 

  45. Chatenoud, L. et al. In vivo cell activation following OKT3 administration. Systemic cytokine release and modulation by corticosteroids. Transplantation 49, 697–702 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Woodle, E. S. et al. Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3γ1(Ala-Ala) in the treatment of acute renal allograft rejection. Transplantation 68, 608–616 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Friend, P. J. et al. Phase I study of an engineered aglycosylated humanized CD3 antibody in renal transplant rejection. Transplantation 68, 1632–1637 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Feldmann, M. & Maini, R. N. Anti-TNF-α therapy of rheumatoid arthritis: what have we learned? Annu. Rev. Immunol. 19, 163–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Harada, M., Kishimoto, Y. & Makino, S. Prevention of overt diabetes and insulitis in NOD mice by a single BCG vaccination. Diab. Res. Clin. Pract. 8, 85–89 (1990).

    Article  CAS  Google Scholar 

  50. Martins, T. C. & Aguas, A. P. Mechanisms of Mycobacterium avium-induced resistance against insulin- dependent diabetes mellitus (IDDM) in non-obese diabetic (NOD) mice: role of Fas and Th1 cells. Clin. Exp. Immunol. 115, 248–254 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Elias, D. et al. Vaccination against autoimmune mouse diabetes with a T-cell epitope of the human 65-kDa heat shock protein. Proc. Natl Acad. Sci. USA 88, 3088–3091 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Quintana, F. J., Rotem, A., Carmi, P. & Cohen, I. R. Vaccination with empty plasmid DNA or CpG oligonucleotide inhibits diabetes in nonobese diabetic mice: modulation of spontaneous 60-kDa heat shock protein autoimmunity. J. Immunol. 165, 6148–6155 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Ohashi, K., Burkart, V., Flohe, S. & Kolb, H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164, 558–561 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Vabulas, R. M. et al. Endocytosed heat shock protein 60s use TLR2 and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem. Published online 11 June 2001 as 10.1074/jbc.M103217200.

  55. Cooke, A. et al. Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol. 21, 169–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Banting, F. G. B. & Best, C. H. The internal secretion of the pancreas. J. Lab. Clin. Med. 7, 465–480 (1922).

    Google Scholar 

  57. Shapiro, A. M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Soria, B., Skoudy, A. & Martin, F. From stem cells to β cells: new strategies in cell therapy of diabetes mellitus. Diabetologia 44, 407–415 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Pictet, R. L. & Rutter, W. J. in Handbook of Physiology (eds. Steiner, D. & Freinkel, N.) 25–66 (Williams and Wilkins, Baltimore, MD, 1972).

    Google Scholar 

  60. Weir, G. C. & Bonner-Weir, S. Islets of Langerhans: the puzzle of intraislet interactions and their relevance to diabetes. J. Clin. Invest. 85, 983–987 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gu, D. & Sarvetnick, N. Epithelial cell proliferation and islet neogenesis in IFN-γ transgenic mice. Development 118, 33–46 (1993).

    CAS  PubMed  Google Scholar 

  62. Ramiya, V. K. et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nature Med. 6, 278–282 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Bonner–Weir, S. et al. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl Acad. Sci. USA 97, 7999–8004 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  64. O'Reilly, L. A. et al. α-Cell neogenesis in an animal model of IDDM. Diabetes 46, 599–606 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371, 606–609 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Foulis, L. O'Reilly, D. Dunne and P. Zaccone for allowing us to mention some of our unpublished collaborative results and R. Allen, M. Drage and Z. Fehervari for careful reading of the manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooke, A., Phillips, J. & Parish, N. Tolerogenic strategies to halt or prevent type 1 diabetes. Nat Immunol 2, 810–815 (2001). https://doi.org/10.1038/ni0901-810

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0901-810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing