Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD4+ T cell effectors can become memory cells with high efficiency and without further division

Abstract

Whether memory T lymphocytes are derived directly from effector T cells or via a separately controlled pathway has long been debated. Here we present evidence that, after adoptive transfer, a large fraction of in vitro–derived effector CD4+ T cells have the potential to become memory T cells and that this transition can occur without further division. This data supports a linear pathway from effector to memory cells and suggests that most properties of memory cells are predetermined during effector generation. We suggest, therefore, that evaluation of vaccine efficacy in the induction of memory CD4+ T cells should focus on the effector stage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in effector cells induced by resting.
Figure 2: Initial cell distribution and recovery in class II−/− mice after adoptive transfer.
Figure 3: Long-term cell survival in class II−/− mice after adoptive transfer of effectors.
Figure 4: Survival of rested effectors without much division in class II−/− hosts.
Figure 5: Cytokine production of memory cells derived from rested TH2 effectors.

Similar content being viewed by others

References

  1. Swain, S. L., Hu, H. & Huston, G. Class II-independent generation of CD4 memory T cells from effectors. Science 286, 1381–1383 (1999).

    Article  CAS  Google Scholar 

  2. Swain, S. L. Generation and in vivo persistence of polarized Th1 and Th2 memory cells. Immunity 1, 543–552 (1994).

    Article  CAS  Google Scholar 

  3. Bruno, L., Kirberg, J. & von Boehmer, H. On the cellular basis of immunological T cell memory. Immunity 2, 37–43 (1995).

    Article  CAS  Google Scholar 

  4. McHeyzer-Williams M. G. & Davis, M. M. Antigen-specific development of primary and memory T cells in vivo. Science 268, 106–111 (1995).

    Article  CAS  Google Scholar 

  5. Liu, Y., Wenger, R. H., Zhao, M. & Nielsen, P. Distinct costimulatory molecules are required for the induction of effector and memory cytotoxic T lymphocytes. J. Exp. Med. 185, 251–262 (1997).

    Article  CAS  Google Scholar 

  6. Cerwenka, A., Carter, L. L., Ream, J. B., Swain, S. L. & Dutton, R.W. In vivo persistence of CD8 polarized T cell subsets producing type 1 or type 2 cytokines. J. Immunol. 161, 97–105 (1998).

    CAS  PubMed  Google Scholar 

  7. Opferman, J. T., Ober, B. T. & Ashton-Rickardt, P. G. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283, 1745–1748 (1999).

    Article  CAS  Google Scholar 

  8. Jacob, J. & Baltimore, D. Modeling T-cell memory by genetic marking of memory T cells in vivo. Nature 399, 593–597 (1999).

    Article  CAS  Google Scholar 

  9. Farber, D. L. Differential TCR signaling and the generation of memory T cells. J. Immunol. 160, 535–539 (1998).

    CAS  PubMed  Google Scholar 

  10. Ahmadzadeh, M., Hussain, S. F. & Farber, D. L. Effector CD4 T cells are biochemically distinct from the memory subset: Evidence for long-term persistence of effectors in vivo. J. Immunol. 163, 3053–3063 (1999).

    CAS  PubMed  Google Scholar 

  11. Pihlgren, M., Dubois, P. M., Tomkowiak, M., Sjogren, T. & Marvel, J. Resting memory CD8+ T cells are hyperreactive to antigenic challenge in vitro. J. Exp. Med. 184, 2141–2151 (1996).

    Article  CAS  Google Scholar 

  12. Topham, D. J., Tripp, R. A., Hamilton-Easton, A. M., Sarawar, S. R. & Doherty, P. C. Quantitative analysis of the influenza virus-specific CD4+ T cell memory in the absence of B cells and Ig. J. Immunol. 157, 2947–2952 (1996).

    CAS  PubMed  Google Scholar 

  13. Swain, S. L. et al. From naïve to memory T cells. Immunol. Rev. 150, 143–167 (1996).

    Article  CAS  Google Scholar 

  14. Ahmed, R. & Gray, D. Immunological memory and protective immunity: Understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  Google Scholar 

  15. Sprent, J. Immunological memory. Curr. Opin. Immunol. 9, 371–379 (1997).

    Article  CAS  Google Scholar 

  16. Dutton, R. W., Bradley, L. M. & Swain, S. L. T cell memory. Annu. Rev. Immunol. 16, 201–223 (1998).

    Article  CAS  Google Scholar 

  17. Rogers, P. R., Dubey, C. & Swain, S. L. Qualitative changes accompany memory T cell generation: Faster, more effective responses at lower doses of antigen. J. Immunol. 164, 2338–2346 (2000).

    Article  CAS  Google Scholar 

  18. Garcia, S., DiSanto, J. & Stockinger, B. Following the development of a CD4 T cell response in vivo: From activation to memory formation. Immunity 11, 163–171 (1999).

    Article  CAS  Google Scholar 

  19. Dubey, C., Croft, M. & Swain, S. L. Costimulatory requirements of na?ve CD4+ T cells: ICAM-1 or B7–1 can costimulate naïve CD4 T cell activation but both are required for optimum response. J. Immunol. 155, 45–57 (1995).

    CAS  PubMed  Google Scholar 

  20. Rogers, P. R., Huston, G. & Swain, S. L. High antigen density and IL-2 are required for generation of CD4 effectors secreting Th1 rather than Th0 Cytokines. J. Immunol. 161, 3844 (1998).

    CAS  PubMed  Google Scholar 

  21. Swain, S. L. Helper T cell differentiation. Curr. Opin. Immunol. 11, 180–185 (1999).

    Article  CAS  Google Scholar 

  22. Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 100, 655–669 (2000).

    Article  CAS  Google Scholar 

  23. Ouyang, W. et al. STAT6-independent GATA-3 autoactivation directs IL-4 independent Th2 development and commitment. Immunity 12, 27–37 (2000).

    Article  CAS  Google Scholar 

  24. Bix, M. & Locksley, R. M. Independent and epigenetic regulation of the interleukin-4 alleles in CD4+ T cells. Science 281, 1352–1354 (1998).

    Article  CAS  Google Scholar 

  25. Fitzpatrick, D. R. et al. Distinct methylation of the interferon γ (IFN-γ) and interleukin 3 (IL-3) genes in newly activated primary CD8+ T lymphocytes: regional IFN-γ promoter demethylation and mRNA expression are heritable in CD44(high)CD8+ T cells. J. Exp. Med. 188, 103–117 (1998).

    Article  CAS  Google Scholar 

  26. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998).

    Article  CAS  Google Scholar 

  27. Agarwal, S., Avni, O. & Rao, A. Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity 12, 643–652 (2000).

    Article  CAS  Google Scholar 

  28. Bird, J. J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    Article  CAS  Google Scholar 

  29. Richter, A., Lohing, M. & Radbruch, A. Instruction for cytokine expression in T helper lymphocytes in relation to proliferation and cell cycle progression. J. Exp. Med. 190, 1439–1450 (1999).

    Article  CAS  Google Scholar 

  30. Fitzpatrick, D. R., Shirley, K. M. & Kelso, A. Stable epigenetic inheritance of regional IFN-γ promoter demethylation in CD44high CD8+ T lymphocytes. J. Immunol. 162, 5053–5057 (1999).

    CAS  PubMed  Google Scholar 

  31. Viret, C., Wong, F. S. & Janeway, C. A. Designing and maintaining the mature TCR repertoire: the continuum of self-peptide: self-MHC complex recognition. Immunity 10, 559–568 (1999).

    Article  CAS  Google Scholar 

  32. Ernst, B., Lee, D. S., Chang, J. M., Sprent, J. & Surh, C. D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173–181 (1999).

    Article  CAS  Google Scholar 

  33. Lee, W. T. & Pelletier, W. J. Visualizing memory phenotype development after in vitro stimulation of CD4 T cells. Cell. Immunol. 188, 1–11 (1998).

    Article  CAS  Google Scholar 

  34. Zhang, X. et al. Unequal death in Th1 and Th2 effectors: Th1 but not Th2 effectors undergo rapid Fas/FasL-mediated apoptosis. J. Exp. Med. 185, 1837–1849 (1997).

    Article  CAS  Google Scholar 

  35. Harbertson, J., Biederman, E., Bennet, K. E., Kondrack, R. M. & Bradley, L, M. Withdrawal of stimulation may initiate the transition of effector to memory cells. J. Exp. Med. (submitted, 2001).

  36. Bradley, L. M., Duncan, D. D., Tonkonogy, S. & Swain, S. L. Characterization of antigen-specific CD4+ effector T cells in vivo: immunization results in a transient population of MEL-14, CD45RB helper cells that secretes interleukin 2 (IL-2), IL-3, IL-4, and interferon γ. J. Exp. Med. 174, 547–559 (1991).

    Article  CAS  Google Scholar 

  37. Jelley-Gibbs, D. M., Lepak, N., Yen, M. & Swain, S.L. Two distinct stages in the transition from naïve CD4 T cells to effectors, early antigen dependent and late cytokine driven expansion and differentiation. J. Immunol. 165, 5017–5026 (2000).

    Article  CAS  Google Scholar 

  38. Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A. & Rocha, B. Response of naïve and memory CD8+ T cells to antigen stimulation in vivo. Nature Immunol. 1, 47–53 (2000).

    Article  CAS  Google Scholar 

  39. Cerwenka, A., Morgan, T. M. & Dutton, R. W. Naïve, effector, and memory CD8 T cells in protection against pulmonary influenza virus infection: Homing properties rather than initial frequencies are crucial. J. Immunol. 163, 5535–5543 (1999).

    CAS  PubMed  Google Scholar 

  40. Selin, L. K. et al. Attrition of T cell memory: Selective loss of LCMV epitope-specific memory CD8 T cells following infections with heterologous viruses. Immunity 11, 733–742 (1999).

    Article  CAS  Google Scholar 

  41. Whitmire J. K., Murali-Krishna, K., Altman, J. & Ahmed, R. Antiviral CD4 and CD8 T-cell memory: differences in the size of the response and activation requirements. Phil. Trans. R. Soc. Lond. B 355, 373–379 (2000).

    Article  CAS  Google Scholar 

  42. Zhang, X., Sun, S., Hwang, I., Tough, D. F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591–599 (1998).

    Article  CAS  Google Scholar 

  43. Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000).

    Article  CAS  Google Scholar 

  44. Kaye, J. et al. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341, 746–749 (1989).

    Article  CAS  Google Scholar 

  45. Rooke, R., Waltzinger, C., Benoist, C. & Mathis, D. Targeted complementation of MHC class II deficiency by intrathymic delivery of recombinant adenoviruses. Immunity 7, 123–134 (1997).

    Article  CAS  Google Scholar 

  46. Haynes, L., Linton, P-J., Eaton, S. M., Tonkonogy, S. L. & Swain, S. L. Interleukin-2, but not other common γ chain-binding cytokines, can reverse the defect in generation of CD4 effector T cells from naïve cells of aged mice. J. Exp. Med. 190, 1013–1023 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Swain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Huston, G., Duso, D. et al. CD4+ T cell effectors can become memory cells with high efficiency and without further division. Nat Immunol 2, 705–710 (2001). https://doi.org/10.1038/90643

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90643

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing