Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Homeostatic control of lymphocyte survival: potential origins and implications

Abstract

Lymphocytes depend on extracellular ligands to maintain their viability. Structurally diverse lymphocyte receptors transmit survival signals through separate signal transduction cascades, which all share the ability to sustain viability by maintaining the sequestration of apoptogenic factors within mitochondria. Receptors can induce cellular survival either by promoting the expression and/or function of anti-apoptotic Bcl-2 family proteins or by activating the phosphatidylinositol-3 kinase–Akt pathway. Either of these events represses the function of the pro-apoptotic proteins Bax and Bak, which are required for mitochondrial release of cytochrome c. As we discuss here, the apparently redundant functions of Bax and Bak may have evolved to prevent lymphocyte mitochondria from adapting to loss of receptor–mediated signal transduction and thus keep lymphocytes from accumulating in a cell-autonomous manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of apoptosis upon loss of ligands for survival receptors.
Figure 2: Receptors can promote survival by stimulating glucose metabolism.
Figure 3: Receptor control of glycolysis and survival through Akt.

Similar content being viewed by others

References

  1. Evan, G.I. & Vousden, K.H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).

    CAS  PubMed  Google Scholar 

  2. Tsujimoto, Y., Cossman, J., Jaffe, E. & Croce, C.M. Involvement of the bcl-2 gene in human follicular lymphoma. Science 228, 1440–1443 (1985).

    CAS  PubMed  Google Scholar 

  3. McDonnell, T.J. et al. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57, 79–88 (1989).

    CAS  PubMed  Google Scholar 

  4. Strasser, A., Harris, A.W., Bath, M.L. & Cory, S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348, 331–333 (1990).

    CAS  PubMed  Google Scholar 

  5. Vaux, D.L., Cory, S. & Adams, J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988).

    CAS  PubMed  Google Scholar 

  6. Desagher, S. & Martinou, J.C. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 10, 369–377 (2000).

    CAS  PubMed  Google Scholar 

  7. Liu, X., Kim, C.N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).

    CAS  PubMed  Google Scholar 

  8. Zou, H., Henzel, W.J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997).

    CAS  PubMed  Google Scholar 

  9. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    CAS  PubMed  Google Scholar 

  10. Verhagen, A.M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    CAS  PubMed  Google Scholar 

  11. Suzuki, Y. et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613–621 (2001).

    CAS  PubMed  Google Scholar 

  12. Susin, S.A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).

    CAS  PubMed  Google Scholar 

  13. Li, L.Y., Luo, X. & Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95–99 (2001).

    CAS  PubMed  Google Scholar 

  14. Gross, A., McDonnell, J.M. & Korsmeyer, S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911 (1999).

    CAS  PubMed  Google Scholar 

  15. Huang, D.C. & Strasser, A. BH3-only proteins-essential initiators of apoptotic cell death. Cell 103, 839–842 (2000).

    CAS  PubMed  Google Scholar 

  16. Marrack, P. et al. Homeostasis of αβ TCR+ T cells. Nature Immunol. 1, 107–111 (2000).

    CAS  Google Scholar 

  17. Nakajima, H., Noguchi, M. & Leonard, W.J. Role of the common cytokine receptor γ chain (γc) in thymocyte selection. Immunol. Today 21, 88–94 (2000).

    CAS  PubMed  Google Scholar 

  18. Zha, J., Harada, H., Yang, E., Jockel, J. & Korsmeyer, S.J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-xL . Cell 87, 619–628 (1996).

    CAS  PubMed  Google Scholar 

  19. Harada, H. et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol. Cell 3, 413–422 (1999).

    CAS  PubMed  Google Scholar 

  20. Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362 (1999).

    CAS  PubMed  Google Scholar 

  21. Dijkers, P.F., Medema, R.H., Lammers, J.W., Koenderman, L. & Coffer, P.J. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr. Biol. 10, 1201–1204 (2000).

    CAS  PubMed  Google Scholar 

  22. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    CAS  PubMed  Google Scholar 

  23. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002).

    CAS  PubMed  Google Scholar 

  24. von Freeden-Jeffry, U. et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526 (1995).

    CAS  PubMed  Google Scholar 

  25. von Freeden-Jeffry, U., Solvason, N., Howard, M. & Murray, R. The earliest T lineage-committed cells depend on IL-7 for Bcl-2 expression and normal cell cycle progression. Immunity 7, 147–154 (1997).

    CAS  PubMed  Google Scholar 

  26. Pallard, C. et al. Distinct roles of the phosphatidylinositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors. Immunity 10, 525–535 (1999).

    CAS  PubMed  Google Scholar 

  27. Qin, J.Z. et al. Interleukin-7 and interleukin-15 regulate the expression of the bcl-2 and c-myb genes in cutaneous T-cell lymphoma cells. Blood 98, 2778–2783 (2001).

    CAS  PubMed  Google Scholar 

  28. Rathmell, J.C., Farkash, E.A., Gao, W. & Thompson, C.B. IL-7 enhances the survival and maintains the size of naïve T cells. J. Immunol. 167, 6869–6876 (2001).

    CAS  PubMed  Google Scholar 

  29. Maraskovsky, E. et al. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor- deficient mice but not in mutant rag-1−/− mice. Cell 89, 1011–1019 (1997).

    CAS  PubMed  Google Scholar 

  30. Akashi, K., Kondo, M., von Freeden-Jeffry, U., Murray, R. & Weissman, I.L. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89, 1033–1041 (1997).

    CAS  PubMed  Google Scholar 

  31. Khaled, A.R., Kim, K., Hofmeister, R., Muegge, K. & Durum, S.K. Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc. Natl. Acad. Sci. USA 96, 14476–14481 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dumon, S. et al. IL-3 dependent regulation of Bcl-xL gene expression by STAT5 in a bone marrow derived cell line. Oncogene 18, 4191–4199 (1999).

    CAS  PubMed  Google Scholar 

  33. Gu, H. et al. New role for Shc in activation of the phosphatidylinositol 3-kinase/Akt pathway. Mol. Cell. Biol. 20, 7109–7120 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Guthridge, M.A. et al. Site-specific serine phosphorylation of the IL-3 receptor is required for hemopoietic cell survival. Mol. Cell 6, 99–108 (2000).

    CAS  PubMed  Google Scholar 

  35. Gu, H. et al. Essential role for Gab2 in the allergic response. Nature 412, 186–190 (2001).

    CAS  PubMed  Google Scholar 

  36. Heymann, D. & Rousselle, A.V. gp130 Cytokine family and bone cells. Cytokine 12, 1455–1468 (2000).

    CAS  PubMed  Google Scholar 

  37. Teague, T.K., Marrack, P., Kappler, J.W. & Vella, A.T. IL-6 rescues resting mouse T cells from apoptosis. J. Immunol. 158, 5791–5796 (1997).

    CAS  PubMed  Google Scholar 

  38. Catlett-Falcone, R. et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10, 105–115 (1999).

    CAS  PubMed  Google Scholar 

  39. Chen, R.H., Chang, M.C., Su, Y.H., Tsai, Y.T. & Kuo, M.L. Interleukin-6 inhibits transforming growth factor-β-induced apoptosis through the phosphatidylinositol 3-kinase/Akt and signal transducers and activators of transcription 3 pathways. J. Biol. Chem. 274, 23013–23019 (1999).

    CAS  PubMed  Google Scholar 

  40. Teague, T.K. et al. Activation-induced inhibition of interleukin 6-mediated T cell survival and signal transducer and activator of transcription 1 signaling. J. Exp. Med. 191, 915–926 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Narimatsu, M. et al. Tissue-specific autoregulation of the stat3 gene and its role in interleukin-6-induced survival signals in T cells. Mol. Cell. Biol. 21, 6615–6625 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Suzuki, A. et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14, 523–534 (2001).

    CAS  PubMed  Google Scholar 

  43. Hardy, R.R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol. 19, 595–621 (2001).

    CAS  PubMed  Google Scholar 

  44. Shaw, A.C., Swat, W., Ferrini, R., Davidson, L. & Alt, F.W. Activated Ras signals developmental progression of recombinase-activating gene (RAG)-deficient pro-B lymphocytes. J. Exp. Med. 189, 123–129 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nagaoka, H. et al. Ras mediates effector pathways responsible for pre-B cell survival, which is essential for the developmental progression to the late pre-B cell stage. J. Exp. Med. 192, 171–182 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lam, K.P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 (1997).

    CAS  PubMed  Google Scholar 

  47. Polic, B., Kunkel, D., Scheffold, A. & Rajewsky, K. How αβ T cells deal with induced TCRα ablation. Proc. Natl. Acad. Sci. USA 98, 8744–8749 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sprent, J. Burnet oration. T-cell survival and the role of cytokines. Immunol. Cell. Biol. 79, 199–206 (2001).

    CAS  PubMed  Google Scholar 

  49. Pages, F. et al. Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 369, 327–329 (1994).

    CAS  PubMed  Google Scholar 

  50. Okkenhaug, K. et al. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nature Immunol. 2, 325–332 (2001).

    CAS  Google Scholar 

  51. Kane, L.P., Andres, P.G., Howland, K.C., Abbas, A.K. & Weiss, A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines. Nature Immunol. 2, 37–44 (2001).

    CAS  Google Scholar 

  52. Chuang, E. et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13, 313–322 (2000).

    CAS  PubMed  Google Scholar 

  53. Millward, T.A., Zolnierowicz, S. & Hemmings, B.A. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem. Sci. 24, 186–191 (1999).

    CAS  PubMed  Google Scholar 

  54. Schwartz, M.A. Integrin signaling revisited. Trends Cell Biol. 11, 466–470 (2001).

    CAS  PubMed  Google Scholar 

  55. Delcommenne, M. et al. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc. Natl. Acad. Sci. USA 95, 11211–11216 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Perez, O.D. et al. Activation of the PKB/AKT pathway by ICAM-2. Immunity 16, 51–65 (2002).

    CAS  PubMed  Google Scholar 

  57. Alizadeh, A.A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    CAS  PubMed  Google Scholar 

  58. de Fougerolles, A.R., Stacker, S.A., Schwarting, R. & Springer, T.A. Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1. J. Exp. Med. 174, 253–267 (1991).

    CAS  PubMed  Google Scholar 

  59. Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–2933 (2001).

    CAS  PubMed  Google Scholar 

  60. Vander Heiden, M.G. & Thompson, C.B. Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nature Cell Biol. 1, E209–216 (1999).

    CAS  PubMed  Google Scholar 

  61. Whetton, A.D. & Dexter, T.M. Effect of haematopoietic cell growth factor on intracellular ATP levels. Nature 303, 629–631 (1983).

    CAS  PubMed  Google Scholar 

  62. Whetton, A.D., Bazill, G.W. & Dexter, T.M. Haemopoietic cell growth factor mediates cell survival via its action on glucose transport. EMBO J. 3, 409–413 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kan, O., Baldwin, S.A. & Whetton, A.D. Apoptosis is regulated by the rate of glucose transport in an IL-3- dependent haemopoietic cell line. Biochem. Soc. Trans. 22, S275 (1994).

    Google Scholar 

  64. Rathmell, J.C., Vander Heiden, M.G., Harris, M.H., Frauwirth, K.A. & Thompson, C.B. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol. Cell 6, 683–692 (2000).

    CAS  PubMed  Google Scholar 

  65. Vander Heiden, M.G. et al. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol. Cell. Biol. 21, 5899–5912 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Deprez, J., Vertommen, D., Alessi, D.R., Hue, L. & Rider, M.H. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J. Biol. Chem. 272, 17269–17275 (1997).

    CAS  PubMed  Google Scholar 

  67. Marsin, A.S. et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol. 10, 1247–1255 (2000).

    CAS  PubMed  Google Scholar 

  68. Gottlob, K. et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 15, 1406–1418 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nicholls, D.G. & Ferguson, S.J. in Bioenergetics 2 23–34 (Harcourt Brace Jovanovich, London, 1992).

    Google Scholar 

  70. Plas, D.R., Talapatra, S., Edinger, A.L., Rathmell, J.C. & Thompson, C.B. Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology. J. Biol. Chem. 276, 12041–12048 (2001).

    CAS  PubMed  Google Scholar 

  71. Hsu, Y.T., Wolter, K.G. & Youle, R.J. Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis. Proc. Natl. Acad. Sci. USA 94, 3668–3672 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hsu, Y.T. & Youle, R.J. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J. Biol. Chem. 273, 10777–10783 (1998).

    CAS  PubMed  Google Scholar 

  73. Suzuki, M., Youle, R.J. & Tjandra, N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, 645–654 (2000).

    CAS  PubMed  Google Scholar 

  74. Knudson, C.M., Tung, K.S., Tourtellotte, W.G., Brown, G.A. & Korsmeyer, S.J. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270, 96–99 (1995).

    CAS  PubMed  Google Scholar 

  75. Zong, W.X., Lindsten, T., Ross, A.J., MacGregor, G.R. & Thompson, C.B. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev. 15, 1481–1486 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cheng, E.H. et al. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell 8, 705–711 (2001).

    CAS  PubMed  Google Scholar 

  77. Brazil, D.P. & Hemmings, B.A. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem. Sci. 26, 657–664 (2001).

    CAS  PubMed  Google Scholar 

  78. Hill, M.M. et al. A role for protein kinase Bβ/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes. Mol. Cell. Biol. 19, 7771–7781 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    CAS  PubMed  Google Scholar 

  80. Kane, L.P., Shapiro, V.S., Stokoe, D. & Weiss, A. Induction of NF-κB by the Akt/PKB kinase. Curr. Biol. 9, 601–604 (1999).

    CAS  PubMed  Google Scholar 

  81. Wang, C.Y., Mayo, M.W., Korneluk, R.G., Goeddel, D.V. & Baldwin, A.S. Jr. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c- IAP2 to suppress caspase-8 activation. Science 281, 1680–1683 (1998).

    CAS  PubMed  Google Scholar 

  82. Datta, S.R. et al. Akt phosphorylation of BAD couples survival signals to the cell- intrinsic death machinery. Cell 91, 231–241 (1997).

    CAS  PubMed  Google Scholar 

  83. Siegel, R.M., Chan, F.K., Chun, H.J. & Lenardo, M.J. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nature Immunol. 1, 469–474 (2000).

    CAS  Google Scholar 

  84. Schreck, R., Rieber, P. & Baeuerle, P.A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1. EMBO J. 10, 2247–2258 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Matsuyama, S., Llopis, J., Deveraux, Q.L., Tsien, R.Y. & Reed, J.C. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nature Cell Biol. 2, 318–325 (2000).

    CAS  PubMed  Google Scholar 

  86. Vander Heiden, M.G., Chandel, N.S., Schumacker, P.T. & Thompson, C.B. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell 3, 159–167 (1999).

    CAS  PubMed  Google Scholar 

  87. Pierce, S.B. et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev. 15, 672–686 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Britton, J.S., Lockwood, W.K., Li, L., Cohen, S.M. & Edgar, B.A. Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev. Cell 2, 239–249 (2002).

    CAS  PubMed  Google Scholar 

  89. Smaili, S.S., Hsu, Y.T., Sanders, K.M., Russell, J.T. & Youle, R.J. Bax translocation to mitochondria subsequent to a rapid loss of mitochondrial membrane potential. Cell Death Differ. 8, 909–920 (2001).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig B. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plas, D., Rathmell, J. & Thompson, C. Homeostatic control of lymphocyte survival: potential origins and implications. Nat Immunol 3, 515–521 (2002). https://doi.org/10.1038/ni0602-515

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0602-515

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing