Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

A memoir of AID, which engraves antibody memory on DNA

Tasuku Honjo recounts his work aimed at unraveling the molecular mystery of how antibodies undergo antigen-induced maturation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article  CAS  Google Scholar 

  2. Schatz, D.G., Oettinger, M.A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

    Article  CAS  Google Scholar 

  3. Oettinger, M.A., Schatz, D.G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    Article  CAS  Google Scholar 

  4. Dreyer, W.J. & Bennett, J.C. The molecular basis of antibody formation: a paradox. Proc. Natl. Acad. Sci. USA 54, 864–869 (1965).

    Article  CAS  Google Scholar 

  5. Wang, A.C., Wang, I.Y., McCormick, J.N. & Fudenberg, H.H. The identity of light chains of monoclonal IgG and monoclonal IgM in one patient. Immunochemistry 6, 451–459 (1969).

    Article  CAS  Google Scholar 

  6. Weigert, M.G., Cesari, I.M., Yonkovich, S.J. & Cohn, M. Variability in the λ light chain sequences of mouse antibody. Nature 228, 1045–1047 (1970).

    Article  CAS  Google Scholar 

  7. Honjo, T. & Kataoka, T. Organization of immunoglobulin heavy chain genes and allelic deletion model. Proc. Natl. Acad. Sci. USA 75, 2140–2144 (1978).

    Article  CAS  Google Scholar 

  8. Honjo, T. Immunoglobulin genes. Annu. Rev. Immunol. 1, 499–528 (1983).

    Article  CAS  Google Scholar 

  9. Zhang, J., Alt, F.W. & Honjo, T. in Immunoglobulin Genes (eds. Honjo, T., Alt, F. W. & Rabbitts, T.H.) 235–266 (Academic Press Limited, London, 1995).

    Book  Google Scholar 

  10. Shimizu, A., Takahashi, N., Yaoita, Y. & Honjo, T. Organization of the constant-region gene family of the mouse immunoglobulin heavy chain. Cell 28, 499–506 (1982).

    Article  CAS  Google Scholar 

  11. Noma, Y. et al. Cloning of cDNA encoding the murine IgG1 induction factor by a novel strategy using SP6 promoter. Nature 319, 640–646 (1986).

    Article  CAS  Google Scholar 

  12. Nakamura, M. et al. High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+ cells. Int. Immunol. 8, 193–201 (1996).

    Article  CAS  Google Scholar 

  13. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    Article  CAS  Google Scholar 

  14. Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002).

    Article  CAS  Google Scholar 

  15. Muto, T., Muramatsu, M., Taniwaki, M., Kinoshita, K. & Honjo, T. Isolation, tissue distribution, and chromosomal localization of the human activation-induced cytidine deaminase (AID) gene. Genomics 68, 85–88 (2000).

    Article  CAS  Google Scholar 

  16. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  Google Scholar 

  17. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  Google Scholar 

  18. Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002).

    Article  CAS  Google Scholar 

  19. Okazaki, I.M. et al. Constitutive expression of AID leads to tumorigenesis. J. Exp. Med. 197, 1173–1181 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  20. Matsumoto, Y. et al. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat. Med. 13, 470–476 (2007).

    Article  CAS  Google Scholar 

  21. Endo, Y. et al. Expression of activation-induced cytidine deaminase in human hepatocytes via NF-κB signaling. Oncogene 26, 5587–5595 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honjo, T. A memoir of AID, which engraves antibody memory on DNA. Nat Immunol 9, 335–337 (2008). https://doi.org/10.1038/ni0408-335

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0408-335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing