Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shouts, whispers and the kiss of death: directional secretion in T cells

Abstract

T cells use secreted soluble factors for highly specific intercellular communication and targeted cell killing. This specificity is achieved first through T cell receptor–mediated recognition of complexes of peptide and major histocompatibility complex displayed by appropriate antigen-presenting cells and then by the directed secretion of cytokines and lytic factors into the immunological synapse between the T cell and antigen-presenting cell. Studies have begun to probe the molecular basis for this synaptic secretion and have also shown that T cells release chemokines and certain inflammatory factors through a multidirectional pathway directed away from the synapse. Thus, the mode of secretion seems to be tailored to the intended function of the secreted molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The time course of T cell secretory responses.

Kim Caesar

Figure 2: Secretion of vesicles from cells.

Kim Caesar

Similar content being viewed by others

References

  1. Bromley, S.K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Boisvert, J., Edmondson, S. & Krummel, M.F. Immunological synapse formation licenses CD40–CD40L accumulations at T-APC contact sites. J. Immunol. 173, 3647–3652 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Poo, W.J., Conrad, L. & Janeway, C.A., Jr. Receptor-directed focusing of lymphokine release by helper T cells. Nature 332, 378–380 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Kupfer, A., Mosmann, T.R. & Kupfer, H. Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc. Natl. Acad. Sci. USA 88, 775–779 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kupfer, H., Monks, C.R. & Kupfer, A. Small splenic B cells that bind to antigen-specific T helper (Th) cells and face the site of cytokine production in the Th cells selectively proliferate: immunofluorescence microscopic studies of Th-B antigen-presenting cell interactions. J. Exp. Med. 179, 1507–1515 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Geiger, B., Rosen, D. & Berke, G. Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells. J. Cell Biol. 95, 137–143 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Kupfer, A., Dennert, G. & Singer, S.J. Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets. Proc. Natl. Acad. Sci. USA 80, 7224–7228 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sedwick, C.E. et al. TCR, LFA-1, and CD28 play unique and complementary roles in signaling T cell cytoskeletal reorganization. J. Immunol. 162, 1367–1375 (1999).

    CAS  PubMed  Google Scholar 

  10. Kuhne, M.R. et al. Linker for activation of T cells, ζ-associated protein-70, and Src homology 2 domain-containing leukocyte protein-76 are required for TCR-induced microtubule-organizing center polarization. J. Immunol. 171, 860–866 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Martin-Cofreces, N.B. et al. Role of Fyn in the rearrangement of tubulin cytoskeleton induced through TCR. J. Immunol. 176, 4201–4207 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Ardouin, L. et al. Vav1 transduces TCR signals required for LFA-1 function and cell polarization at the immunological synapse. Eur. J. Immunol. 33, 790–797 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Combs, J. et al. Recruitment of dynein to the Jurkat immunological synapse. Proc. Natl. Acad. Sci. USA 103, 14883–14888 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gomez, T.S. et al. Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. Immunity 26, 177–190 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Faix, J. & Grosse, R. Staying in shape with formins. Dev. Cell 10, 693–706 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Wen, Y. et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat. Cell Biol. 6, 820–830 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Brandt, D.T. & Grosse, R. Get to grips: steering local actin dynamics with IQGAPs. EMBO Rep. 8, 1019–1023 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brandt, D.T. et al. Dia1 and IQGAP1 interact in cell migration and phagocytic cup formation. J. Cell Biol. 178, 193–200 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stinchcombe, J.C., Majorovits, E., Bossi, G., Fuller, S. & Griffiths, G.M. Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443, 462–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Stowers, L., Yelon, D., Berg, L.J. & Chant, J. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc. Natl. Acad. Sci. USA 92, 5027–5031 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Berke, G. The CTL's kiss of death. Cell 81, 9–12 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Huse, M., Lillemeier, B.F., Kuhns, M.S., Chen, D.S. & Davis, M.M. T cells use two directionally distinct pathways for cytokine secretion. Nat. Immunol. 7, 247–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Barcia, C. et al. In vivo polarization of IFN-gamma at Kupfer and non-Kupfer immunological synapses during the clearance of virally infected brain cells. J. Immunol. 180, 1344–1352 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Reichert, P., Reinhardt, R.L., Ingulli, E. & Jenkins, M.K. Cutting edge: in vivo identification of TCR redistribution and polarized IL-2 production by naive CD4 T cells. J. Immunol. 166, 4278–4281 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, D.S. et al. Marked differences in human melanoma antigen-specific T cell responsiveness after vaccination using a functional microarray. PLoS Med. 2, e265 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jahn, R., Lang, T. & Sudhof, T.C. Membrane fusion. Cell 112, 519–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Parlati, F. et al. Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc. Natl. Acad. Sci. USA 99, 5424–5429 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Augustin, I., Rosenmund, C., Sudhof, T.C. & Brose, N. Munc13–1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Chapman, E.R. How does synaptotagmin trigger neurotransmitter release? Annu. Rev. Biochem. 77, 615–641 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Menasche, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat. Genet. 25, 173–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Stinchcombe, J.C. et al. Rab27a is required for regulated secretion in cytotoxic T lymphocytes. J. Cell Biol. 152, 825–834 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clark, R.H. et al. Adaptor protein 3–dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nat. Immunol. 4, 1111–1120 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Dell'Angelica, E.C., Shotelersuk, V., Aguilar, R.C., Gahl, W.A. & Bonifacino, J.S. Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol. Cell 3, 11–21 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Ma, J.S. et al. Protein kinase Cδ regulates antigen receptor-induced lytic granule polarization in mouse CD8+ CTL. J. Immunol. 178, 7814–7821 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Krzewski, K., Chen, X. & Strominger, J.L. WIP is essential for lytic granule polarization and NK cell cytotoxicity. Proc. Natl. Acad. Sci. 105, 2568–2573 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Voskoboinik, I., Smyth, M.J. & Trapani, J.A. Perforin-mediated target-cell death and immune homeostasis. Nat. Rev. Immunol. 6, 940–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Feldmann, J. et al. Munc13–4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115, 461–473 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Neeft, M. et al. Munc13–4 is an effector of Rab27a and controls secretion of lysosomes in hematopoietic cells. Mol. Biol. Cell 16, 731–741 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bryceson, Y.T. et al. Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients. Blood 110, 1906–1915 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Holt, O. et al. Slp1 and Slp2-a localize to the plasma membrane of CTL and contribute to secretion from the immunological synapse. Traffic 9, 446–457 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Robertson, L.K., Mireau, L.R. & Ostergaard, H.L. A role for phosphatidylinositol 3-kinase in TCR-stimulated ERK activation leading to paxillin phosphorylation and CTL degranulation. J. Immunol. 175, 8138–8145 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Takayama, H. & Sitkovsky, M.V. Antigen receptor-regulated exocytosis in cytotoxic T lymphocytes. J. Exp. Med. 166, 725–743 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Schaller, M.D. Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20, 6459–6472 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Das, V. et al. Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes. Immunity 20, 577–588 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nat. Cell Biol. 5, 126–136 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Wendler, F. & Tooze, S. Syntaxin 6: the promiscuous behaviour of a SNARE protein. Traffic 2, 606–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Murray, R.Z., Kay, J.G., Sangermani, D.G. & Stow, J.L. A role for the phagosome in cytokine secretion. Science 310, 1492–1495 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Murray, R.Z., Wylie, F.G., Khromykh, T., Hume, D.A. & Stow, J.L. Syntaxin 6 and Vti1b form a novel SNARE complex, which is up-regulated in activated macrophages to facilitate exocytosis of tumor necrosis factor-α. J. Biol. Chem. 280, 10478–10483 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Pagan, J.K. et al. The t-SNARE syntaxin 4 is regulated during macrophage activation to function in membrane traffic and cytokine secretion. Curr. Biol. 13, 156–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Morales-Tirado, V. et al. Cutting edge: selective requirement for the Wiskott-Aldrich syndrome protein in cytokine, but not chemokine, secretion by CD4+ T cells. J. Immunol. 173, 726–730 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Alberts, B. et al. in Molecular Biology of the Cell 5th edn. 711–767 (Taylor and Francis, New York, 2007).

    Book  Google Scholar 

  54. Catalfamo, M. et al. Human CD8+ T cells store RANTES in a unique secretory compartment and release it rapidly after TCR stimulation. Immunity 20, 219–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. (2005).

  56. Taylor, P.C., Williams, R.O. & Feldmann, M. Tumour necrosis factor α as a therapeutic target for immune-mediated inflammatory diseases. Curr. Opin. Biotechnol. 15, 557–563 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Sancho, D. et al. The tyrosine kinase PYK-2/RAFTK regulates natural killer (NK) cell cytotoxic response, and is translocated and activated upon specific target cell recognition and killing. J. Cell Biol. 149, 1249–1262 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, X. et al. CD28-stimulated ERK2 phosphorylation is required for polarization of the microtubule organizing center and granules in YTS NK cells. Proc. Natl. Acad. Sci. USA 103, 10346–10351 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Serrador, J.M. et al. HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization. Immunity 20, 417–428 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Huse, M. et al. Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity 27, 76–88 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Z. Chai for discussions. Supported by the National Institutes of Health (AI057229 to M.M.D.) and the Howard Hughes Medical Institute (M.M.D.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Morgan Huse or Mark M Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huse, M., Quann, E. & Davis, M. Shouts, whispers and the kiss of death: directional secretion in T cells. Nat Immunol 9, 1105–1111 (2008). https://doi.org/10.1038/ni.f.215

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.f.215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing