Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Immune mechanisms at the maternal-fetal interface: perspectives and challenges

Leaders gathered at the US National Institutes of Health in November 2014 to discuss recent advances and emerging research areas in aspects of maternal-fetal immunity that may affect fetal development and pregnancy success.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification of placentas based on histological assessment of the maternal-chorion interface.

Katie Vicari/Nature Publishing Group

Figure 2: Various immune cells interact with uterine and trophoblast cells during pregnancy.
Figure 3: Tolerance to the semiallogeneic fetus compared with organ transplantation.

Katie Vicari/Nature Publishing Group

References

  1. Mincheva-Nilsson, L. & Baranov, V. Am. J. Reprod. Immunol. 72, 440–457 (2014).

    Article  CAS  Google Scholar 

  2. Global Health Observatory. World Health Observatory (GHO data)—Maternal and reproductive health (World Health Organization, 2013). http://www.who.int/gho/maternal_health/en/

  3. The Partnership for Maternal, Newborn and Child Health. PMNCH Progress Report 2012 (World Health Organization, 2012). http://www.who.int/pmnch/knowledge/publications/pmnch_2012_report/en/

  4. Born too soon: The Global Action Report on Preterm Birth (World Health Organization, Geneva, 2012). http://www.who.int/maternal_child_adolescent/documents/born_too_soon/en/

  5. Su, R.-W. et al. J. Clin. Endocrinol. Metab. 100, E433–E442 (2014).

    Article  Google Scholar 

  6. Giuliani, E., Parkin, K.L., Lessey, B.A., Young, S.L. & Fazleabas, A.T. Am. J. Reprod. Immunol. 72, 262–269 (2014).

    Article  CAS  Google Scholar 

  7. Spencer, T.E. Semin. Reprod. Med. 32, 346–357 (2014).

    Article  CAS  Google Scholar 

  8. Burton, G.J., Scioscia, M. & Rademacher, T.W. J. Reprod. Immunol. 89, 118–125 (2011).

    Article  CAS  Google Scholar 

  9. Amita, M. et al. Proc. Natl. Acad. Sci. USA 110, E1212–E1221 (2013).

    Article  CAS  Google Scholar 

  10. Daikoku, T. et al. Dev. Cell 21, 1014–1025 (2011).

    Article  CAS  Google Scholar 

  11. Hirota, Y. et al. J. Clin. Invest. 120, 803–815 (2010).

    Article  CAS  Google Scholar 

  12. Clementi, C. et al. PLoS Genet. 9, e1003863 (2013).

    Article  Google Scholar 

  13. Nagashima, T. et al. J. Clin. Invest. 123, 2539–2550 (2013).

    Article  CAS  Google Scholar 

  14. Li, M., Wu, Y. & Caron, K. Biol. Reprod. 79, 1169–1175 (2008).

    Article  CAS  Google Scholar 

  15. Klein, K.R. et al. Dev. Cell 30, 528–540 (2014).

    Article  CAS  Google Scholar 

  16. Racicot, K., Kwon, J., Aldo, P., Silasi, M. & Mor, G. Am. J. Reprod. Immunol. 72, 107–116 (2014).

    Article  Google Scholar 

  17. Erlebacher, A. Annu. Rev. Immunol. 31, 387–411 (2013).

    Article  CAS  Google Scholar 

  18. Plaks, V. et al. J. Clin. Invest. 118, 3954–3965 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nancy, P. et al. Science 336, 1317–1321 (2012).

    Article  CAS  Google Scholar 

  20. Raj, R.S., Bonney, E. & Phillippe, M. Reprod. Sci. 21, 1434–1451 (2014).

    Article  CAS  Google Scholar 

  21. Hiby, S.E. et al. J. Clin. Invest. 120, 4102–4110 (2010).

    Article  CAS  Google Scholar 

  22. Aagaard, K. et al. Sci. Transl. Med. 6, 237ra265 (2014).

    Google Scholar 

  23. Xin, L. et al. J. Immunol. 192, 2970–2974 (2014).

    Article  CAS  Google Scholar 

  24. Mold, J.E. et al. Science 330, 1695–1699 (2010).

    Article  CAS  Google Scholar 

  25. Mold, J.E. et al. Science 322, 1562–1565 (2008).

    Article  CAS  Google Scholar 

  26. Krow-Lucal, E.R., Kim, C., Burt, T. & McCune, J. Blood 123, 1897–1904 (2014).

    Article  CAS  Google Scholar 

  27. Co, E.C. et al. Biol. Reprod. 88, 155 (2013).

    Article  Google Scholar 

  28. Medawar, P.B. Symp. Soc. Exp. Biol. 7, 320–338 (1953).

    Google Scholar 

  29. Guttmacher, A.E., Maddox, Y. & Spong, C. Placenta 35, 303–304 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Lenhart and D. Chakraborty for their time and effort in providing immunohistochemical sections for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercy PrabhuDas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PrabhuDas, M., Bonney, E., Caron, K. et al. Immune mechanisms at the maternal-fetal interface: perspectives and challenges. Nat Immunol 16, 328–334 (2015). https://doi.org/10.1038/ni.3131

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3131

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research