Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Immune diseases caused by mutations in kinases and components of the ubiquitin system

Abstract

The signaling networks that control the immune system are coordinated by a myriad of interconnecting phosphorylation and ubiquitylation events. This review provides an overview of mutations in human genes encoding these proteins that give rise to immune diseases. Analysis of the biological effects of these mutations has revealed the true physiological roles of particular signaling networks and promises to revolutionize the treatment of these diseases.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Components of the ubiquitin system and protein kinases whose mutation causes or may predispose to human immune diseases.

References

  1. Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291–322 (2012).

    CAS  PubMed  Article  Google Scholar 

  2. Smith, H. et al. Identification of the phosphorylation sites on the E3 ubiquitin ligase Pellino that are critical for activation by IRAK1 and IRAK4. Proc. Natl. Acad. Sci. USA 106, 4584–4590 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Strack, P. et al. SCFβ-TRCP and phosphorylation dependent ubiquitination of IκBα catalyzed by Ubc3 and Ubc4. Oncogene 19, 3529–3536 (2000).

    CAS  PubMed  Article  Google Scholar 

  4. Xia, Z.P. et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461, 114–119 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Cohen, P. & Alessi, D.R. Kinase drug discovery–what's next in the field? ACS Chem. Biol. 8, 96–104 (2013).

    CAS  PubMed  Article  Google Scholar 

  6. Cohen, P. & Tcherpakov, M. Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143, 686–693 (2010).

    CAS  PubMed  Article  Google Scholar 

  7. Emmerich, C.H. et al. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc. Natl. Acad. Sci. USA 110, 15247–15252 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. Fiil, B.K. et al. OTULIN restricts Met1-linked ubiquitination to control innate immune signaling. Mol. Cell 50, 818–830 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Clark, K., Nanda, S. & Cohen, P. Molecular control of the NEMO family of ubiquitin-binding proteins. Nat. Rev. Mol. Cell Biol. 14, 673–685 (2013).

    CAS  PubMed  Article  Google Scholar 

  10. Courtois, G. & Israel, A. IKK regulation and human genetics. Curr. Top. Microbiol. Immunol. 349, 73–95 (2011).

    CAS  PubMed  Google Scholar 

  11. Döffinger, R. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat. Genet. 27, 277–285 (2001).

    PubMed  Article  Google Scholar 

  12. Ea, C.K., Deng, L., Xia, Z.P., Pineda, G. & Chen, Z.J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    CAS  Article  PubMed  Google Scholar 

  13. Wu, C.-J., Conze, D.B., Li, T., Srinivasula, S.M. & Ashwell, J.D. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nat. Cell Biol. 8, 398–406 (2006).

    CAS  Article  PubMed  Google Scholar 

  14. Kensche, T. et al. Analysis of nuclear factor-κB (NF-κB) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of NF-κB. J. Biol. Chem. 287, 23626–23634 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Lo, Y.C. et al. Structural basis for recognition of diubiquitins by NEMO. Mol. Cell 33, 602–615 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Picard, C., Casanova, J.L. & Puel, A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. Clin. Microbiol. Rev. 24, 490–497 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Kirisako, T. et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25, 4877–4887 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Boisson, B. et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat. Immunol. 13, 1178–1186 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. HogenEsch, H., Janke, S., Boggess, D. & Sundberg, J.P. Absence of Peyer's patches and abnormal lymphoid architecture in chronic proliferative dermatitis (cpdm/cpdm) mice. J. Immunol. 162, 3890–3896 (1999).

    CAS  PubMed  Google Scholar 

  20. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    CAS  PubMed  Article  Google Scholar 

  21. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Rigaud, S. et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444, 110–114 (2006).

    CAS  PubMed  Article  Google Scholar 

  23. Damgaard, R.B. et al. The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol. Cell 46, 746–758 (2012).

    CAS  PubMed  Google Scholar 

  24. Damgaard, R.B. et al. Disease-causing mutations in the XIAP BIR2 domain impair NOD2-dependent immune signalling. EMBO Mol. Med. 5, 1278–1295 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Philpott, D.J., Sorbara, M.T., Robertson, S.J., Croitoru, K. & Girardin, S.E. NOD proteins: regulators of inflammation in health and disease. Nat. Rev. Immunol. 14, 9–23 (2014).

    CAS  PubMed  Article  Google Scholar 

  26. Schwandner, R., Yamaguchi, K. & Cao, Z. Requirement of tumor necrosis factor receptor-associated factor (TRAF)6 in interleukin 17 signal transduction. J. Exp. Med. 191, 1233–1240 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Liu, C. et al. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci. Signal. 2, ra63 (2009).

    PubMed  PubMed Central  Google Scholar 

  28. Qian, Y. et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat. Immunol. 8, 247–256 (2007).

    CAS  Article  PubMed  Google Scholar 

  29. Boisson, B. et al. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity 39, 676–686 (2013).

    CAS  PubMed  Article  Google Scholar 

  30. Conti, H.R. et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206, 299–311 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Iwakura, Y. & Ishigame, H. The IL-23/IL-17 axis in inflammation. J. Clin. Invest. 116, 1218–1222 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Gleason, C.E., Ordureau, A., Gourlay, R., Arthur, J.S. & Cohen, P. Polyubiquitin binding to optineurin is required for optimal activation of TANK-binding kinase 1 and production of interferon β. J. Biol. Chem. 286, 35663–35674 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Morton, S., Hesson, L., Peggie, M. & Cohen, P. Enhanced binding of TBK1 by an optineurin mutant that causes a familial form of primary open angle glaucoma. FEBS Lett. 582, 997–1002 (2008).

    CAS  PubMed  Article  Google Scholar 

  36. Munitic, I. et al. Optineurin insufficiency impairs IRF3 but not NF-κB activation in immune cells. J. Immunol. 191, 6231–6240 (2013).

    CAS  PubMed  Article  Google Scholar 

  37. Pilli, M. et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223–234 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Albagha, O.M. et al. Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget's disease of bone. Nat. Genet. 42, 520–524 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Laurin, N., Brown, J.P., Morissette, J. & Raymond, V. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am. J. Hum. Genet. 70, 1582–1588 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223–226 (2010).

    CAS  PubMed  Article  Google Scholar 

  41. Rubino, E. et al. SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology 79, 1556–1562 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  42. Rezaie, T. et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295, 1077–1079 (2002).

    CAS  PubMed  Article  Google Scholar 

  43. Kawase, K. et al. Confirmation of TBK1 duplication in normal tension glaucoma. Exp. Eye Res. 96, 178–180 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Nanda, S.K. et al. Polyubiquitin binding to ABIN1 is required to prevent autoimmunity. J. Exp. Med. 208, 1215–1228 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Gregersen, P.K. et al. Risk for myasthenia gravis maps to a (151) Pro→Ala change in TNIP1 and to human leukocyte antigen-B*08. Ann. Neurol. 72, 927–935 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Han, J.W. et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat. Genet. 41, 1234–1237 (2009).

    CAS  PubMed  Article  Google Scholar 

  47. He, C.F. et al. TNIP1, SLC15A4, ETS1, RasGRP3 and IKZF1 are associated with clinical features of systemic lupus erythematosus in a Chinese Han population. Lupus 19, 1181–1186 (2010).

    PubMed  Article  Google Scholar 

  48. Nair, R.P. et al. Psoriasis bench to bedside: genetics meets immunology. Arch. Dermatol. 145, 462–464 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  49. Yang, Q. et al. Investigation of 20 non-HLA (human leucocyte antigen) psoriasis susceptibility loci in Chinese patients with psoriatic arthritis and psoriasis vulgaris. Br. J. Dermatol. 168, 1060–1065 (2013).

    CAS  PubMed  Article  Google Scholar 

  50. Caster, D.J. et al. ABIN1 dysfunction as a genetic basis for lupus nephritis. J. Am. Soc. Nephrol. 24, 1743–1754 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Matmati, M. et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat. Genet. 43, 908–912 (2011).

    CAS  PubMed  Article  Google Scholar 

  52. Skaug, B. et al. Direct, noncatalytic mechanism of IKK inhibition by A20. Mol. Cell 44, 559–571 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Tokunaga, F. et al. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation. EMBO J. 31, 3856–3870 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Verhelst, K. et al. A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J. 31, 3845–3855 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Ngo, V.N. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 470, 115–119 (2011).

    CAS  PubMed  Article  Google Scholar 

  56. Nocturne, G. et al. Germline and somatic genetic variations of TNFAIP3 in lymphoma complicating primary Sjogren's syndrome. Blood 122, 4068–4076 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Dong, G. et al. A20, ABIN-1/2, and CARD11 mutations and their prognostic value in gastrointestinal diffuse large B-cell lymphoma. Clin. Cancer Res. 17, 1440–1451 (2011).

    CAS  PubMed  Article  Google Scholar 

  58. Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    CAS  PubMed  Article  Google Scholar 

  59. Komander, D. et al. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep. 10, 466–473 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Lu, T.T. et al. Dimerization and ubiquitin mediated recruitment of A20, a complex deubiquitinating enzyme. Immunity 38, 896–905 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Haglund, K. & Dikic, I. The role of ubiquitylation in receptor endocytosis and endosomal sorting. J. Cell Sci. 125, 265–275 (2012).

    CAS  PubMed  Article  Google Scholar 

  62. Katoh, Y. et al. Tollip and Tom1 form a complex and recruit ubiquitin-conjugated proteins onto early endosomes. J. Biol. Chem. 279, 24435–24443 (2004).

    CAS  PubMed  Article  Google Scholar 

  63. Burns, K. et al. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat. Cell Biol. 2, 346–351 (2000).

    CAS  PubMed  Article  Google Scholar 

  64. Zhang, G. & Ghosh, S. Negative regulation of toll-like receptor-mediated signaling by Tollip. J. Biol. Chem. 277, 7059–7065 (2002).

    CAS  Article  PubMed  Google Scholar 

  65. Brissoni, B. et al. Intracellular trafficking of interleukin-1 receptor I requires Tollip. Curr. Biol. 16, 2265–2270 (2006).

    CAS  PubMed  Article  Google Scholar 

  66. Bulut, Y., Faure, E., Thomas, L., Equils, O. & Arditi, M. Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J. Immunol. 167, 987–994 (2001).

    CAS  PubMed  Article  Google Scholar 

  67. Didierlaurent, A. et al. Tollip regulates proinflammatory responses to interleukin-1 and lipopolysaccharide. Mol. Cell. Biol. 26, 735–742 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Shah, J.A. et al. Human TOLLIP regulates TLR2 and TLR4 signaling and its polymorphisms are associated with susceptibility to tuberculosis. J. Immunol. 189, 1737–1746 (2012).

    CAS  PubMed  Article  Google Scholar 

  69. Mira, M.T. et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 427, 636–640 (2004).

    CAS  PubMed  Article  Google Scholar 

  70. de Leseleuc, L. et al. PARK2 mediates interleukin 6 and monocyte chemoattractant protein 1 production by human macrophages. PLoS Negl. Trop. Dis. 7, e2015 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Hasan, Z. et al. Elevated serum CCL2 concomitant with a reduced mycobacterium-induced response leads to disease dissemination in leprosy. Scand. J. Immunol. 63, 241–247 (2006).

    CAS  PubMed  Article  Google Scholar 

  72. Keusekotten, K. et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153, 1312–1326 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Jin, W. et al. Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J. Clin. Invest. 118, 1858–1866 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Jin, W. et al. Deubiquitinating enzyme CYLD regulates the peripheral development and naive phenotype maintenance of B cells. J. Biol. Chem. 282, 15884–15893 (2007).

    CAS  PubMed  Article  Google Scholar 

  75. Reiley, W.W. et al. Regulation of T cell development by the deubiquitinating enzyme CYLD. Nat. Immunol. 7, 411–417 (2006).

    CAS  Article  PubMed  Google Scholar 

  76. Zhang, M. et al. Regulation of IκB kinase-related kinases and antiviral responses by tumor suppressor CYLD. J. Biol. Chem. 283, 18621–18626 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Sun, S.C. CYLD: a tumor suppressor deubiquitinase regulating NF-κB activation and diverse biological processes. Cell Death Differ. 17, 25–34 (2010).

    CAS  PubMed  Article  Google Scholar 

  78. Rivkin, E. et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498, 318–324 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Lin, S.C., Lo, Y.C. & Wu, H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465, 885–890 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Motshwene, P.G. et al. An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. J. Biol. Chem. 284, 25404–25411 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Picard, C. et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003).

    CAS  PubMed  Article  Google Scholar 

  82. Picard, C. et al. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine (Baltimore) 89, 403–425 (2010).

    CAS  Article  Google Scholar 

  83. Baxter, E.J. et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365, 1054–1061 (2005).

    CAS  Article  PubMed  Google Scholar 

  84. Kralovics, R. et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 352, 1779–1790 (2005).

    CAS  PubMed  Article  Google Scholar 

  85. Laurence, A., Pesu, M., Silvennoinen, O. & O'Shea, J. JAK kinases in health and disease: an update. Open Rheumatol. J. 6, 232–244 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Macchi, P. et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65–68 (1995).

    CAS  PubMed  Article  Google Scholar 

  87. Russell, S.M. et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797–800 (1995).

    CAS  PubMed  Article  Google Scholar 

  88. Rochman, Y., Spolski, R. & Leonard, W.J. New insights into the regulation of T cells by γc family cytokines. Nat. Rev. Immunol. 9, 480–490 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Minegishi, Y. et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25, 745–755 (2006).

    CAS  PubMed  Article  Google Scholar 

  90. Watford, W.T. & O'Shea, J.J. Human tyk2 kinase deficiency: another primary immunodeficiency syndrome. Immunity 25, 695–697 (2006).

    CAS  PubMed  Article  Google Scholar 

  91. Li, Z. et al. Two rare disease-associated Tyk2 variants are catalytically impaired but signaling competent. J. Immunol. 190, 2335–2344 (2013).

    CAS  PubMed  Article  Google Scholar 

  92. Eyre, S. et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 44, 1336–1340 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Conley, M.E., Mathias, D., Treadaway, J., Minegishi, Y. & Rohrer, J. Mutations in Btk in patients with presumed X-linked agammaglobulinemia. Am. J. Hum. Genet. 62, 1034–1043 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Holinski-Feder, E. et al. Mutation screening of the BTK gene in 56 families with X-linked agammaglobulinemia (XLA): 47 unique mutations without correlation to clinical course. Pediatrics 101, 276–284 (1998).

    CAS  PubMed  Article  Google Scholar 

  95. Tsukada, S. et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72, 279–290 (1993).

    CAS  PubMed  Article  Google Scholar 

  96. Vetrie, D. et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361, 226–233 (1993).

    CAS  PubMed  Article  Google Scholar 

  97. Fischer, A. et al. ZAP70: a master regulator of adaptive immunity. Semin. Immunopathol. 32, 107–116 (2010).

    CAS  PubMed  Article  Google Scholar 

  98. Arpaia, E., Shahar, M., Dadi, H., Cohen, A. & Roifman, C.M. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase. Cell 76, 947–958 (1994).

    CAS  PubMed  Article  Google Scholar 

  99. Chan, A.C. et al. ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science 264, 1599–1601 (1994).

    CAS  PubMed  Article  Google Scholar 

  100. Picard, C. et al. Hypomorphic mutation of ZAP70 in human results in a late onset immunodeficiency and no autoimmunity. Eur. J. Immunol. 39, 1966–1976 (2009).

    CAS  PubMed  Article  Google Scholar 

  101. Sakaguchi, N. et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426, 454–460 (2003).

    CAS  PubMed  Article  Google Scholar 

  102. Aguado, E. et al. Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296, 2036–2040 (2002).

    CAS  Article  PubMed  Google Scholar 

  103. Sommers, C.L. et al. A LAT mutation that inhibits T cell development yet induces lymphoproliferation. Science 296, 2040–2043 (2002).

    CAS  Article  PubMed  Google Scholar 

  104. Sancho-Shimizu, V. et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J. Clin. Invest. 121, 4889–4902 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Zhang, S.Y. et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317, 1522–1527 (2007).

    CAS  PubMed  Article  Google Scholar 

  106. Herman, M. et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J. Exp. Med. 209, 1567–1582 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Okkenhaug, K. & Vanhaesebroeck, B. PI3K in lymphocyte development, differentiation and activation. Nat. Rev. Immunol. 3, 317–330 (2003).

    CAS  PubMed  Article  Google Scholar 

  108. Lucas, C.L. et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat. Immunol. 15, 88–97 (2014).

    CAS  PubMed  Article  Google Scholar 

  109. Angulo, I. et al. Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science 342, 866–871 (2013).

  110. Bleich, A. et al. Cdcs1 a major colitis susceptibility locus in mice; subcongenic analysis reveals genetic complexity. Inflamm. Bowel Dis. 16, 765–775 (2010).

    PubMed  Article  Google Scholar 

  111. Boulard, O., Kirchberger, S., Royston, D.J., Maloy, K.J. & Powrie, F.M. Identification of a genetic locus controlling bacteria-driven colitis and associated cancer through effects on innate inflammation. J. Exp. Med. 209, 1309–1324 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. Cho, J.H. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol. 8, 458–466 (2008).

    CAS  PubMed  Article  Google Scholar 

  113. Cho, J.H. et al. Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: evidence for epistasis between 1p and IBD1. Proc. Natl. Acad. Sci. USA 95, 7502–7507 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  114. Heine, M. et al. α-kinase 1, a new component in apical protein transport. J. Biol. Chem. 280, 25637–25643 (2005).

    CAS  PubMed  Article  Google Scholar 

  115. Kay, J.G., Murray, R.Z., Pagan, J.K. & Stow, J.L. Cytokine secretion via cholesterol-rich lipid raft-associated SNAREs at the phagocytic cup. J. Biol. Chem. 281, 11949–11954 (2006).

    CAS  PubMed  Article  Google Scholar 

  116. Luo, C., Wang, K., Liu, D., Li, Y. & Zhao, Q.S. The functional roles of lipid rafts in T cell activation, immune diseases and HIV infection and prevention. Cell. Mol. Immunol. 5, 1–7 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. Wang, S.J. et al. Lymphocyte α-kinase is a gout-susceptible gene involved in monosodium urate monohydrate-induced inflammatory responses. J. Mol. Med. (Berl.) 89, 1241–1251 (2011).

    CAS  Article  Google Scholar 

  118. Pauls, E. et al. Two phases of inflammatory mediator production defined by the study of IRAK2 and IRAK1 knock-in mice. J. Immunol. 191, 2717–2730 (2013).

    CAS  PubMed  Article  Google Scholar 

  119. Uematsu, S. et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction. J. Exp. Med. 201, 915–923 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. Barrat, F.J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Jacob, C.O. et al. Identification of novel susceptibility genes in childhood-onset systemic lupus erythematosus using a uniquely designed candidate gene pathway platform. Arthritis Rheum. 56, 4164–4173 (2007).

    CAS  PubMed  Article  Google Scholar 

  122. Jacob, C.O. et al. Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 106, 6256–6261 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  123. Clark, K. et al. Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages. Proc. Natl. Acad. Sci. USA 109, 16986–16991 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. MacKenzie, K.F. et al. PGE2 induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A–SIK–CRTC3 pathway. J. Immunol. 190, 565–577 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. Liu, J.Z. et al. Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat. Genet. 45, 670–675 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. Graham, R.R. et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus (SLE). Nat. Genet. 40, 1059–1061 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. Musone, S.L. et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat. Genet. 40, 1062–1064 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

I thank S. Nanda, C. Emmerich and K. Clark for suggestions and A. Nicoll for assistance in preparing the manuscript. Supported by a Wellcome Trust Senior Investigator award (WT100294), the UK Medical Research Council (MRC_MR/K000985/1), AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Janssen Pharmaceuticals, Merck-Serono and Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Cohen.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cohen, P. Immune diseases caused by mutations in kinases and components of the ubiquitin system. Nat Immunol 15, 521–529 (2014). https://doi.org/10.1038/ni.2892

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2892

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing