Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Body-barrier surveillance by epidermal γδ TCRs

An Erratum to this article was published on 18 May 2012

This article has been updated

Abstract

The surveillance of body barriers relies on resident T cells whose repertoires are biased toward particular γδ T cell antigen receptors (TCRs) according to location. These γδ TCRs can recognize ligands that emerge after stress. Through the use of intravital dynamics–immunosignal correlative microscopy, we found that γ-chain variable region 5 (Vγ5) TCRs expressed by epidermal T cells were constitutively clustered and functionally activated in vivo at steady state, forming true immunological synapses that polarized and anchored T cell projections at squamous keratinocyte tight junctions. This synaptogenesis depended on TCR variable domains, the kinase Lck and the integrin αEβ7 but not the γδ lineage or the receptor NKG2D. In response to tissue stress, TCR-proximal signals did not increase substantially but underwent stress mode–dependent relocalization toward the basal epidermis and Langerhans cells. Thus, the γδ TCR orchestrates barrier surveillance proactively, presumably by recognizing tissue ligands expressed in the steady state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DETCs are anchored in apical epidermis at steady state through PALPs in a manner dependent on Vγ5 TCRs.
Figure 2: DETCs in wild-type mice are targeted through the PALPs at squamous keratinocyte junctions dependent on γδ TCRs and independent of NKG2D.
Figure 3: Vγ5 TCRs are activated in PALPs and maintain DETCs in an activated state in vivo.
Figure 4: The γδ TCR mediates dendrite attachment through CD103.
Figure 5: PALPs show many hallmarks of immunological synapses.
Figure 6: The γδ TCR sustains dendrite outreach after trauma.
Figure 7: Tissue stress induces relocalization of TCR signals.
Figure 8: Redistribution of TCR signals toward the dermis and Langerhans cells in response to inflammatory stress.

Similar content being viewed by others

Change history

  • 04 April 2012

    In the version of this article initially published, the designation for DETCs that lack a Vγ5 TCR is incorrect. The correct designation is 'Vγ5-'. Also, on page 273, right column, second full paragraph, the designation for reporter mice in the first sentence is incorrect. The correct designation is 'IL-2p8–GFP'. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Jameson, J. et al. A role for skin γδ T cells in wound repair. Science 296, 747–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, Y., Chou, K., Fuchs, E., Havran, W.L. & Boismenu, R. Protection of the intestinal mucosa by intraepithelial γδ T cells. Proc. Natl. Acad. Sci. USA 99, 14338–14343 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Girardi, M., Lewis, J.M., Filler, R.B., Hayday, A.C. & Tigelaar, R.E. Environmentally responsive and reversible regulation of epidermal barrier function by γδ T cells. J. Invest. Dermatol. 126, 808–814 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Carding, S.R. & Egan, P.J. Gammadelta T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2, 336–345 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Xiong, N. & Raulet, D.H. Development and selection of γδ T cells. Immunol. Rev. 215, 15–31 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Bandeira, A. et al. Localization of γδ T cells to the intestinal epithelium is independent of normal microbial colonization. J. Exp. Med. 172, 239–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279, 1737–1740 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Havran, W.L., Chien, Y.H. & Allison, J.P. Recognition of self antigens by skin-derived T cells with invariant γδ antigen receptors. Science 252, 1430–1432 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Diefenbach, A., Jamieson, A.M., Liu, S.D., Shastri, N. & Raulet, D.H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat. Immunol. 1, 119–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Strid, J. et al. Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis. Nat. Immunol. 9, 146–154 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Hayday, A.C. γδ T cells and the lymphoid stress-surveillance response. Immunity 31, 184–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Whang, M.I., Guerra, N. & Raulet, D.H. Costimulation of dendritic epidermal γδ T cells by a new NKG2D ligand expressed specifically in the skin. J. Immunol. 182, 4557–4564 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Havran, W.L. & Allison, J.P. Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature 335, 443–445 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Barbee, S.D. et al. Skint-1 is a highly specific, unique selecting component for epidermal T cells. Proc. Natl. Acad. Sci. USA 108, 3330–3335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boyden, L.M. et al. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal γδ T cells. Nat. Genet. 40, 656–662 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jameson, J.M., Cauvi, G., Witherden, D.A. & Havran, W.L. A keratinocyte-responsive γδ TCR is necessary for dendritic epidermal T cell activation by damaged keratinocytes and maintenance in the epidermis. J. Immunol. 172, 3573–3579 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Hara, H. et al. Development of dendritic epidermal T cells with a skewed diversity of γδ TCRs in Vδ1-deficient mice. J. Immunol. 165, 3695–3705 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Mallick-Wood, C.A. et al. Conservation of T cell receptor conformation in epidermal γδ cells with disrupted primary Vγ gene usage. Science 279, 1729–1733 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Minagawa, M. et al. Homogeneous epithelial γδ T cell repertoire of the skin is shaped through peripheral selection. J. Dermatol. Sci. 25, 150–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Yui, M.A., Sharp, L.L., Havran, W.L. & Rothenberg, E.V. Preferential activation of an IL-2 regulatory sequence transgene in TCR γδ and NKT cells: subset-specific differences in IL-2 regulation. J. Immunol. 172, 4691–4699 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Chiba, H., Osanai, M., Murata, M., Kojima, T. & Sawada, N. Transmembrane proteins of tight junctions. Biochim. Biophys. Acta 1778, 588–600 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Lanier, L.L. DAP10- and DAP12-associated receptors in innate immunity. Immunol. Rev. 227, 150–160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chan, A.C. et al. Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J. 14, 2499–2508 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kersh, E.N., Shaw, A.S. & Allen, P.M. Fidelity of T cell activation through multistep T cell receptor zeta phosphorylation. Science 281, 572–575 (1998).

    CAS  PubMed  Google Scholar 

  28. Schlickum, S. et al. Integrin αE(CD103)β7 influences cellular shape and motility in a ligand-dependent fashion. Blood 112, 619–625 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Schön, M.P. et al. Mucosal T lymphocyte numbers are selectively reduced in integrin αE (CD103)-deficient mice. J. Immunol. 162, 6641–6649 (1999).

    PubMed  Google Scholar 

  30. Dustin, M.L., Chakraborty, A.K. & Shaw, A.S. Understanding the structure and function of the immunological synapse. Cold Spring Harb. Perspect. Biol. published online, doi:10.1101/cshperspect.a002311 (15 September 2010).

  31. Freiberg, B.A. et al. Staging and resetting T cell activation in SMACs. Nat. Immunol. 3, 911–917 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Möbius, W., Herzog, V., Sandhoff, K. & Schwarzmann, G. Intracellular distribution of a biotin-labeled ganglioside, GM1, by immunoelectron microscopy after endocytosis in fibroblasts. J. Histochem. Cytochem. 47, 1005–1014 (1999).

    Article  PubMed  Google Scholar 

  34. Parton, R.G. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J. Histochem. Cytochem. 42, 155–166 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Witherden, D.A. et al. The junctional adhesion molecule JAML is a costimulatory receptor for epithelial γδ T cell activation. Science 329, 1205–1210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saito, T., Yokosuka, T. & Hashimoto-Tane, A. Dynamic regulation of T cell activation and co-stimulation through TCR-microclusters. FEBS Lett. 584, 4865–4871 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Campi, G., Varma, R. & Dustin, M.L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 202, 1031–1036 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Komano, H. et al. Homeostatic regulation of intestinal epithelia by intraepithelial γδ T cells. Proc. Natl. Acad. Sci. USA 92, 6147–6151 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sharp, L.L., Jameson, J.M., Cauvi, G. & Havran, W.L. Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat. Immunol. 6, 73–79 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Mohamadzadeh, M. et al. Functional roles for granzymes in murine epidermal γδ T-cell-mediated killing of tumor targets. J. Invest. Dermatol. 107, 738–742 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Kubo, A., Nagao, K., Yokouchi, M., Sasaki, H. & Amagai, M. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J. Exp. Med. 206, 2937–2946 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thévenaz, P., Ruttimann, U.E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Havran (The Scripps Research Institute) for the 7-17 cell line and advice; E. Rothenberg and M. Yui (Caltech) for IL-2p8–GFP mice; M. Nussenzweig (The Rockefeller University) for CD11c-YFP; L. Lanier, J. Beilke and M. Orr (University of California, San Francisco) for tissue samples from DAP10-DAP12–deficient mice; N.R.J. Gascoigne and G. Fu (The Scripps Research Institute), D. Zhou (MD Anderson Cancer Center) and W. Swat (Washington University School of Medicine) for other mutant mice (data not shown); A. Fukunaga for help with tissue processing; D. Nevozhay for help with statistical analysis; and M. Kripke, S. Watowich, C. Zhu, S. Ullrich, K. Newberry and W. Pagel for comments on the manuscript. Supported by the National Institute of Allergy and Infection Diseases (K22-AI065688 to T.Z.), MD Anderson Cancer Center (3-0026138 to T.Z.), the National Cancer Institute (CA016672 to MD Anderson) and institutional startup funds (T.Z.).

Author information

Authors and Affiliations

Authors

Contributions

G.C. and T.Z. designed the studies, analyzed and interpreted the results and wrote the manuscript; G.C. obtained most of the data; and V.P. and M.A.Z. assisted and acquired some of the data.

Corresponding author

Correspondence to Tomasz Zal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Methods (PDF 6777 kb)

Supplementary Video 1

Apical dendrites are stably anchored. (MOV 992 kb)

Supplementary Video 2

Three-dimensional confocal visualization of DETCs forming apical PALPs in healthy epidermis. (MOV 14131 kb)

Supplementary Video 3

Intravital dynamics-immunosignal correlative microscopy shows that DETC dendrites are anchored in the apical epidermis through PALPs depending on γδTCR. (MOV 670 kb)

Supplementary Video 4

Anchoring of apical dendrites depends on γδ TCR. (MOV 6192 kb)

Supplementary Video 5

Anchoring of apical dendrites depends on Vγ5 TCR. (MOV 1560 kb)

Supplementary Video 6

DETCs remain anchored for days. (MOV 2493 kb)

Supplementary Video 7

DETC dynamics in response to stress stimuli. (MOV 3739 kb)

Supplementary Video 8

Skin inflammation after TLR9 stimulation induces redistribution of TCR signaling. (MOV 10656 kb)

Supplementary Video 9

DETC-Langerhans cell synapse. (MOV 489 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chodaczek, G., Papanna, V., Zal, M. et al. Body-barrier surveillance by epidermal γδ TCRs. Nat Immunol 13, 272–282 (2012). https://doi.org/10.1038/ni.2240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2240

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing