The development of inducible bronchus-associated lymphoid tissue depends on IL-17


Ectopic or tertiary lymphoid tissues, such as inducible bronchus-associated lymphoid tissue (iBALT), form in nonlymphoid organs after local infection or inflammation. However, the initial events that promote this process remain unknown. Here we show that iBALT formed in mouse lungs as a consequence of pulmonary inflammation during the neonatal period. Although we found CD4+CD3 lymphoid tissue–inducer cells (LTi cells) in neonatal lungs, particularly after inflammation, iBALT was formed in mice that lacked LTi cells. Instead, we found that interleukin 17 (IL-17) produced by CD4+ T cells was essential for the formation of iBALT. IL-17 acted by promoting lymphotoxin-α-independent expression of the chemokine CXCL13, which was important for follicle formation. Our results suggest that IL-17-producing T cells are critical for the development of ectopic lymphoid tissues.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Development of iBALT in neonatal mice rather than adult mice.
Figure 2: Formation of iBALT independently of CCR2 and CCR6.
Figure 3: LTi cells are not required for iBALT development.
Figure 4: Higher expression of IL-17 in neonatal lungs than in adult lungs.
Figure 5: The development of iBALT requires IL-17.
Figure 6: IL-17 acts early in iBALT formation but does not maintain iBALT structure.
Figure 7: IL-17-producing T cells promote iBALT formation.


  1. 1

    Randall, T. Bronchus-associated lymphoid tissue: structure and function. Adv. Immunol. 107, 187–241 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Carragher, D.M., Rangel-Moreno, J. & Randall, T.D. Ectopic lymphoid tissues and local immunity. Semin. Immunol. 20, 26–42 (2007).

    Article  Google Scholar 

  3. 3

    Moyron-Quiroz, J.E. et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat. Med. 10, 927–934 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Halle, S. et al. Induced bronchus-associated lymphoid tissue serves as a general priming site for T cells and is maintained by dendritic cells. J. Exp. Med. 206, 2593–2601 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Moyron-Quiroz, J.E. et al. Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs. Immunity 25, 643–654 (2006).

    CAS  Article  Google Scholar 

  6. 6

    GeurtsvanKessel, C.H. et al. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J. Exp. Med. 206, 2339–2349 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Rangel-Moreno, J. et al. Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J. Clin. Invest. 116, 3183–3194 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Ulrichs, T. et al. Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J. Pathol. 204, 217–228 (2004).

    Article  Google Scholar 

  9. 9

    Hogg, J.C. et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350, 2645–2653 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Kratz, A., Campos-Neto, A., Hanson, M.S. & Ruddle, N.H. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J. Exp. Med. 183, 1461–1472 (1996).

    CAS  Article  Google Scholar 

  11. 11

    Randall, T.D., Carragher, D.M. & Rangel-Moreno, J. Development of secondary lymphoid organs. Ann. Rev. Immunol. 26, 627–650 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Cupedo, T., Kraal, G. & Mebius, R.E. The role of CD45+CD4+CD3 cells in lymphoid organ development. Immunol. Rev. 189, 41–50 (2002).

    CAS  Article  Google Scholar 

  13. 13

    van de Pavert, S.A. et al. Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat. Immunol. 10, 1193–1199 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Mebius, R.E., Rennert, P. & Weissman, I.L. Developing lymph nodes collect CD4+CD3LTb+ cells that can differentiate to APC, NK cells, and follicular cells, but not T or B cells. Immunity 7, 493–504 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Ngo, V.N. et al. Lymphotoxin a/b and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 189, 403–412 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Luther, S.A., Lopez, T., Bai, W., Hanahan, D. & Cyster, J.G. BLC Expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 12, 471–481 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Chen, S.C. et al. Ectopic expression of the murine chemokines CCL21a and CCL21b induces the formation of lymph node-like structures in pancreas, but not skin, of transgenic mice. J. Immunol. 168, 1001–1008 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Rangel-Moreno, J., Moyron-Quiroz, J.E., Hartson, L., Kusser, K. & Randall, T.D. Pulmonary expression of CXC chemokine ligand 13, CC chemokine ligand 19, and CC chemokine ligand 21 is essential for local immunity to influenza. Proc. Natl. Acad. Sci. USA 104, 10577–10582 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Gatumu, M.K. et al. Blockade of lymphotoxin-β receptor signaling reduces aspects of Sjogren's syndrome in salivary glands of non-obese diabetic mice. Arthritis Res. Ther. 11, 1–12 (2009).

    Article  Google Scholar 

  20. 20

    Furtado, G.C. et al. Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proc. Natl. Acad. Sci. USA 104, 5026–5031 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Cupedo, T., Jansen, W., Kraal, G. & Mebius, R.E. Induction of secondary and tertiary lymphoid structures in the skin. Immunity 21, 655–667 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Serbina, N.V. & Pamer, E.G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7, 311–317 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Iwasaki, A. & Kelsall, B.L. Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)3a, MIP-3b, and secondary lymphoid organ chemokine. J. Exp. Med. 191, 1381–1394 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Mebius, R.E. et al. The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45+CD4+CD3 cells, as well as macrophages. J. Immunol. 166, 6593–6601 (2001).

    CAS  Article  Google Scholar 

  25. 25

    Cupedo, T. & Mebius, R.E. Cellular interactions in lymph node development. J. Immunol. 174, 21–25 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Sun, Z. et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 288, 2369–2373 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    CAS  Article  Google Scholar 

  28. 28

    Luther, S.A., Ansel, K.M. & Cyster, J.G. Overlapping roles of CXCL13, interleukin 7 receptor α, and CCR7 ligands in lymph node development. J. Exp. Med. 197, 1191–1198 (2003).

    CAS  Article  Google Scholar 

  29. 29

    de Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707 (1994).

    CAS  Article  Google Scholar 

  30. 30

    Zhou, L. et al. IL-6 programs TU-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Marinkovic, T. et al. Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid. J. Clin. Invest. 116, 2622–2632 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Nagatake, T. et al. Id2-, RORγt-, and LTβR-independent initiation of lymphoid organogenesis in ocular immunity. J. Exp. Med. 206, 2351–2364 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Rangel-Moreno, J. et al. Omental milky spots develop in the absence of lymphoid tissue-inducer cells and support B and T cell responses to peritoneal antigens. Immunity 30, 731–743 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Harmsen, A. et al. Organogenesis of nasal associated lymphoid tissue (NALT) occurs independently of lymphotoxin-α (LTα) and retinoic acid receptor-related orphan receptor-γ, but the organization of NALT is LTα-dependent. J. Immunol. 168, 986–990 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Fukuyama, S. et al. Initiation of NALT organogenesis is independent of the IL-7R, LTβR, and NIK signaling pathways but requires the Id2 gene and CD3CD4+CD45+ cells. Immunity 17, 31–40 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Yang, X.O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity 28, 29–39 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Lochner, M. et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells. J. Exp. Med. 208, 125–134 (2010).

    Article  Google Scholar 

  38. 38

    Ikuta, K. et al. A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62, 863–874 (1990).

    CAS  Article  Google Scholar 

  39. 39

    Martin, B., Hirota, K., Cua, D.J., Stockinger, B. & Veldhoen, M. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321–330 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Bagavant, H., Thompson, C., Ohno, K., Setiady, Y. & Tung, K.S. Differential effect of neonatal thymectomy on systemic and organ-specific autoimmune disease. Int. Immunol. 14, 1397–1406 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Kocks, J.R., Davalos-Misslitz, A.C., Hintzen, G., Ohl, L. & Forster, R. Regulatory T cells interfere with the development of bronchus-associated lymphoid tissue. J. Exp. Med. 204, 723–734 (2007).

    CAS  Article  Google Scholar 

  42. 42

    Tshering, T. & Pabst, R. Bronchus associated lymphoid tissue (BALT) is not present in normal adult lung but in different diseases. Pathobiol. 68, 1–8 (2000).

    Article  Google Scholar 

  43. 43

    Sue-Chu, M. et al. Lymphoid aggregates in endobronchial biopsies from young elite cross-country skiers. Am. J. Respir. Crit. Care Med. 158, 597–601 (1998).

    CAS  Article  Google Scholar 

  44. 44

    Heier, I. et al. Bronchial response pattern of antigen presenting cells and regulatory T cells in children less than 2 years of age. Thorax 63, 703–709 (2008).

    CAS  Article  Google Scholar 

  45. 45

    Ersch, J., Tschernig, T. & Stallmach, T. Frequency and potential cause of bronchus-associated lymphoid tissue in fetal lungs. Pediatr. Allergy Immunol. 16, 295–298 (2005).

    Article  Google Scholar 

  46. 46

    Kahnert, A. et al. Mycobacterium tuberculosis triggers formation of lymphoid structure in murine lungs. J. Infect. Dis. 195, 46–54 (2007).

    CAS  Article  Google Scholar 

  47. 47

    Chiavolini, D. et al. Bronchus-associated lymphoid tissue (BALT) and survival in a vaccine mouse model of tularemia. PLoS ONE 5, e11156 (2010).

    Article  Google Scholar 

  48. 48

    Escolar Castellon, J.D., Escolar Castellon, A., Roche Roche, P.A. & Minana Amada, C. Bronchial-associated lymphoid tissue (BALT) response to airway challenge with cigarette smoke, bovine antigen and anti-pulmonary serum. Histol. Histopathol. 7, 321–328 (1992).

    CAS  PubMed  Google Scholar 

  49. 49

    Wiley, J.A. et al. Inducible bronchus-associated lymphoid tissue elicited by a protein cage nanoparticle enhances protection in mice against diverse respiratory viruses. PLoS ONE 4, e7142 (2009).

    Article  Google Scholar 

  50. 50

    van den Berg, W.B. & Miossec, P. IL-17 as a future therapeutic target for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 549–553 (2009).

    CAS  Article  Google Scholar 

  51. 51

    Segal, B.M. Th17 cells in autoimmune demyelinating disease. Semin. Immunopathol. 32, 71–77 (2010).

    CAS  Article  Google Scholar 

  52. 52

    Khader, S.A., Gaffen, S.L. & Kolls, J.K. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2, 403–411 (2009).

    CAS  Article  Google Scholar 

  53. 53

    Ivanov, I.I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  Article  Google Scholar 

  54. 54

    Wu, H.J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    CAS  Article  Google Scholar 

  55. 55

    Dewhirst, F.E. et al. Phylogeny of the defined murine microbiota: altered Schaedler flora. Appl. Environ. Microbiol. 65, 3287–3292 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank L. LaMere and A. Boucher for animal husbandry; S. Lira (Mount Sinai School of Medicine) for Ccr6−/− mice; D. Littman (New York University) for Rorc−/− and Id2−/− mice; J. Cyster (University of California, San Francisco) for Cxcl13−/− and plt/plt mice; L. Haynes (Trudeau Institute) for rederived OT-II mice; and J. Browning (Biogen Idec) for soluble LTβR. Supported by the University of Rochester, the US National Institutes of Health (HL069409, AI072689 and AI061511 to T.D.R.; and HL105427 to S.A.K.) and the Children's Hospital of Pittsburgh.

Author information




J.R.-M., D.M.C., M.d.l.L.G.-H. and T.D.R. designed the experiments; J.R.-M., D.M.C., M.d.l.L.G.-H., J.Y.H., K.K. and L.H. did the experiments; J.R.-M. and T.D.R. wrote the paper; and J.K.K., S.A.K. and T.D.R. edited the paper and provided the funding.

Corresponding author

Correspondence to Troy D Randall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rangel-Moreno, J., Carragher, D., de la Luz Garcia-Hernandez, M. et al. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat Immunol 12, 639–646 (2011).

Download citation

Further reading