Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic analysis of basophil function in vivo

This article has been updated

Abstract

Contributions by basophils to allergic and helminth immunity remain incompletely defined. Using sensitive interleukin 4 (Il4) reporter alleles, we demonstrate here that basophil IL-4 production occurs by a CD4+ T cell–dependent process restricted to the peripheral tissues affected. We genetically marked and achieved specific deletion of basophils and found that basophils did not mediate T helper type 2 (TH2) priming in vivo. Two-photon imaging confirmed that basophils did not interact with antigen-specific T cells in lymph nodes but engaged in prolonged serial interactions with T cells in lung tissues. Although targeted deletion of IL-4 and IL-13 in either CD4+ T cells or basophils had a minimal effect on worm clearance, deletion from both lineages demonstrated a nonredundant role for basophil cytokines in primary helminth immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-4 production by basophils after parasite infection is restricted to affected tissues.
Figure 2: CD4+ T cell activation induces basophil IL-4 production in vitro.
Figure 3: Basophil lineage tracking and deletion in vivo.
Figure 4: Priming of CD4+ T cells in the absence of basophils.
Figure 5: Basophils and CD4+ T cells interact in the lungs but not in the lymph nodes.
Figure 6: Basophil-derived cytokines contribute to anti-helminth immunity.

Similar content being viewed by others

Change history

  • 26 May 2011

    In the version of this article initially published, the label ‘DEL-OV’ in the bottom left graph in Figure 5c is incorrect. The correct label is 'DEL-OVA'. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Chan, M.S. The global burden of intestinal nematode infections–fifty years on. Parasitol. Today 13, 438–443 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Urban, J.F. Jr. Maliszewski, C.R., Madden, K.B., Katona, I.M. & Finkelman, F.D. IL-4 treatment can cure established gastrointestinal nematode infections in immunocompetent and immunodeficient mice. J. Immunol. 154, 4675–4684 (1995).

    CAS  PubMed  Google Scholar 

  3. Urban, J.F. Jr. et al. IL-13, IL-4Rα, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 8, 255–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Voehringer, D., Reese, T.A., Huang, X., Shinkai, K. & Locksley, R.M. Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J. Exp. Med. 203, 1435–1446 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Neill, D.R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Price, A.E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl. Acad. Sci. USA 107, 11489–11494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oh, K., Shen, T., Le Gros, G. & Min, B. Induction of Th2 type immunity in a mouse system reveals a novel immunoregulatory role of basophils. Blood 109, 2921–2927 (2007).

    CAS  PubMed  Google Scholar 

  9. Sokol, C.L., Barton, G.M., Farr, A.G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat. Immunol. 9, 310–318 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yanagihara, Y. et al. Cultured basophils but not cultured mast cells induce human IgE synthesis in B cells after immunologic stimulation. Clin. Exp. Immunol. 111, 136–143 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perrigoue, J.G. et al. MHC class II–dependent basophil–CD4+ T cell interactions promote TH2 cytokine-dependent immunity. Nat. Immunol. 10, 697–705 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sokol, C.L. et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat. Immunol. 10, 713–720 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoshimoto, T. et al. Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide–MHC class II complexes to CD4+ T cells. Nat. Immunol. 10, 706–712 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Phythian-Adams, A.T. et al. CD11c depletion severely disrupts Th2 induction and development in vivo. J. Exp. Med. 207, 2089–2096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hammad, H. et al. Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J. Exp. Med. 207, 2097–2111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ohnmacht, C. et al. Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity 33, 364–374 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Tang, H. et al. The T helper type 2 response to cysteine proteases requires dendritic cell–basophil cooperation via ROS-mediated signaling. Nat. Immunol. 11, 608–617 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wada, T. et al. Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J. Clin. Invest. 120, 2867–2875 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Min, B. et al. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J. Exp. Med. 200, 507–517 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Voehringer, D., Shinkai, K. & Locksley, R.M. Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20, 267–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Mohrs, K., Wakil, A.E., Killeen, N., Locksley, R.M. & Mohrs, M. A two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity 23, 419–429 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R.M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15, 303–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Reinhardt, R.L., Liang, H.E. & Locksley, R.M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10, 385–393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Panhuys, N. et al. Basophils are the major producers of IL-4 during primary helminth infection. J. Immunol. 186, 2719–2728 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Pearce, E.J. & MacDonald, A.S. The immunobiology of schistosomiasis. Nat. Rev. Immunol. 2, 499–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Lantz, C.S. et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392, 90–93 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Lantz, C.S. et al. IL-3 is required for increases in blood basophils in nematode infection in mice and can enhance IgE-dependent IL-4 production by basophils in vitro. Lab. Invest. 88, 1134–1142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen, T. et al. T cell-derived IL-3 plays key role in parasite infection-induced basophil production but is dispensable for in vivo basophil survival. Int. Immunol. 20, 1201–1209 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Poorafshar, M., Helmby, H., Troye-Blomberg, M. & Hellman, L. MMCP-8, the first lineage-specific differentiation marker for mouse basophils. Elevated numbers of potent IL-4-producing and MMCP-8-positive cells in spleens of malaria-infected mice. Eur. J. Immunol. 30, 2660–2668 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Gallwitz, M. & Hellman, L. Rapid lineage-specific diversification of the mast cell chymase locus during mammalian evolution. Immunogenetics 58, 641–654 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Voehringer, D., Liang, H.E. & Locksley, R.M. Homeostasis and effector function of lymphopenia-induced 'memory-like' T cells in constitutively T cell-depleted mice. J. Immunol. 180, 4742–4753 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Henrickson, S.E. & von Andrian, U.H. Single-cell dynamics of T-cell priming. Curr. Opin. Immunol. 19, 249–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Cyster, J.G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Voehringer, D., Wu, D., Liang, H.E. & Locksley, R.M. Efficient generation of long-distance conditional alleles using recombineering and a dual selection strategy in replicate plates. BMC Biotechnol. 9, 69 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sullivan, B.M. & Locksley, R.M. Basophils: a nonredundant contributor to host immunity. Immunity 30, 12–20 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Ben-Sasson, S.Z., Le Gros, G., Conrad, D.H., Finkelman, F.D. & Paul, W.E. Cross-linking Fc receptors stimulate splenic non-B, non-T cells to secrete interleukin 4 and other lymphokines. Proc. Natl. Acad. Sci. USA 87, 1421–1425 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Conrad, D.H., Ben-Sasson, S.Z., Le Gros, G., Finkelman, F.D. & Paul, W.E. Infection with Nippostrongylus brasiliensis or injection of anti-IgD antibodies markedly enhances Fc-receptor-mediated interleukin 4 production by non-B, non-T cells. J. Exp. Med. 171, 1497–1508 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Le Gros, G. et al. IL-3 promotes production of IL-4 by splenic non-B, non-T cells in response to Fc receptor cross-linkage. J. Immunol. 145, 2500–2506 (1990).

    CAS  PubMed  Google Scholar 

  40. Seder, R.A. et al. Purified FcɛR+ bone marrow and splenic non-B, non-T cells are highly enriched in the capacity to produce IL-4 in response to immobilized IgE, IgG2a, or ionomycin. J. Immunol. 147, 903–909 (1991).

    CAS  PubMed  Google Scholar 

  41. Denzel, A. et al. Basophils enhance immunological memory responses. Nat. Immunol. 9, 733–742 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Obata, K. et al. Basophils are essential initiators of a novel type of chronic allergic inflammation. Blood 110, 913–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Ohnmacht, C. & Voehringer, D. Basophil effector function and homeostasis during helminth infection. Blood 113, 2816–2825 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, S. et al. Cutting edge: Basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3. J. Immunol. 184, 1143–1147 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Gallwitz, M., Enoksson, M. & Hellman, L. Expression profile of novel members of the rat mast cell protease (rMCP)-2 and (rMCP)-8 families, and functional analyses of mouse mast cell protease (mMCP)-8. Immunogenetics 59, 391–405 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Mukai, K. et al. Basophils play a critical role in the development of IgE-mediated chronic allergic inflammation independently of T cells and mast cells. Immunity 23, 191–202 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Finkelman, F.D. et al. Cytokine regulation of host defense against parasitic gastrointestinal nematodes: lessons from studies with rodent models. Annu. Rev. Immunol. 15, 505–533 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Finkelman, F.D. et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol. Rev. 201, 139–155 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Fallon, P.G. et al. IL-4 induces characteristic Th2 responses even in the combined absence of IL-5, IL-9, and IL-13. Immunity 17, 7–17 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Veiga-Fernandes, H. et al. Tyrosine kinase receptor RET is a key regulator of Peyer's patch organogenesis. Nature 446, 547–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Allen, C.D., Okada, T., Tang, H.L. & Cyster, J.G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Lindquist, R.L. et al. Visualizing dendritic cell networks in vivo. Nat. Immunol. 5, 1243–1250 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Davies, S.J. et al. Modulation of blood fluke development in the liver by hepatic CD4+ lymphocytes. Science 294, 1358–1361 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Delmotte, P. & Sanderson, M.J. Ciliary beat frequency is maintained at a maximal rate in the small airways of mouse lung slices. Am. J. Respir. Cell Mol. Biol. 35, 110–117 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K.C. Lim and N. Flores for technical support; E. Thornton and M. Krummel for training in lung-slice preparation; D. Kioussis (Medical Research Council National Institute for Medical Research) for huCD2-DsRed transgenic mice; and J. Cyster (University of California, San Francisco) for mice and two-photon microscope use. Supported by the US National Institutes of Health (AI026918 and AI077439), the Howard Hughes Medical Institute and the Sandler Asthma Basic Research Center at the University of California San Francisco, San Francisco.

Author information

Authors and Affiliations

Authors

Contributions

B.M.S., H.-E.L., C.D.C.A. and R.M.L. conceived of the work; H.-E.L. generated Basoph8 reporter mice; B.M.S. designed and did most experiments; C.D.C.A. contributed two-photon imaging data; J.K.B. and B.M.S. analyzed basophils in the small intestine; D.W. and B.M.S. generated data from mice infected with S. mansoni cercariae; L.E.C. analyzed mast cells in the skin in Basoph8 mice; J.K.M. provided S. mansoni cercariae and eggs; and B.M.S., C.D.C.A. and R.M.L. wrote the manuscript.

Corresponding authors

Correspondence to Christopher D C Allen or Richard M Locksley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–11 (PDF 1074 kb)

Supplementary Video 1

Basophils and antigen-specific CD4+ T cells do not interact in draining lymph nodes after primary immunization with S. mansoni eggs and OVA. A time-lapse sequence of 24 μm z-projection images from an inguinal lymph node explant is shown approximately three days after subcutaneous immunization. Elapsed time is indicated as hh:mm:ss. (MOV 7192 kb)

Supplementary Video 2

Basophils and antigen-specific CD4+ T cells do not interact in draining lymph nodes after primary immunization with papain and OVA. A time-lapse sequence of 32 μm z-projection images from an inguinal lymph node explant is shown approximately 2.25 days after subcutaneous immunization. Elapsed time is indicated as hh:mm:ss. (MOV 5385 kb)

Supplementary Video 3

Antigen-specific CD4+ T cells interact with cognate antigen-specific B cells, but not basophils, in draining lymph nodes after primary immunization. A time-lapse sequence of 33 μm z-projection images from an inguinal lymph node explant is shown approximately 3.7 days after subcutaneous immunization with a mixture of papain and DEL-OVA. Elapsed time is indicated as hh:mm:ss. (MOV 10866 kb)

Supplementary Video 4

Basophils and antigen-specific CD4+ T cells engage in multiple serial interactions in the lung after primary N. brasiliensis infection. A time-lapse sequence of 29 μm z-projection images from a lung slice is shown approximately 7.5 days after N. brasiliensis infection, with intranasal OVA administered on days 1 and 6. Elapsed time is indicated as hh:mm:ss. The video corresponds to the still images shown in Fig. 5a and the characteristics of the serial encounters are quantified in Fig. 5d,e and Supplementary Fig. 8. (MOV 12493 kb)

Supplementary Video 5

Basophils and polyclonal T cells engage in multiple serial interactions in the lung after primary N. brasiliensis infection. A time-lapse sequence of 26 μm z-projection images from a lung slice is shown approximately 7.25 days after N. brasiliensis infection of a Basoph8 mouse carrying a hCD2-dsRed transgene. This transgene is highly expressed in T cells and weakly expressed in subsets of dendritic cells, macrophages, NK cells, and other undefined cell types. In this image sequence, a single green basophil and bright red T cell are shown interacting in the center, with a weakly fluorescent macrophage off to the right side. Elapsed time is indicated as hh:mm:ss. (MOV 4431 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, B., Liang, HE., Bando, J. et al. Genetic analysis of basophil function in vivo. Nat Immunol 12, 527–535 (2011). https://doi.org/10.1038/ni.2036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2036

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing