Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells

Abstract

Weak T cell antigen receptor (TCR) signals from contact with self ligands act in synergy with antiapoptotic signals induced by interleukin 7 (IL-7) to promote the survival of naive T cells in a resting state. The amount of background TCR signaling in naive T cells is set by post-thymic TCR tuning and operates at an intensity just below that required to induce entry into the cell cycle. Costimulation from higher concentrations of IL-7 and other common γ-chain cytokines can induce T cells to undergo homeostatic proliferation and conversion into cells with a memory phenotype; many of these memory phenotype cells may be the progeny of cells responding to self antigens. The molecular mechanisms that control the conversion of naive resting T cells into memory-phenotype cells TCR-dependent in normal animals are beginning to be understood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TCR tuning and signaling pathways involved in maintaining the survival of naive T cells in a quiescent state.
Figure 2: Positive selection in the thymus.
Figure 3: Possible mechanisms involved in conversion of naive T cells to the memory phenotype under normal physiological conditions.

Similar content being viewed by others

References

  1. Surh, C.D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008).

    CAS  PubMed  Google Scholar 

  2. Takada, K. & Jameson, S.C. Naive T cell homeostasis: from awareness of space to a sense of place. Nat. Rev. Immunol. 9, 823–832 (2009).

    CAS  PubMed  Google Scholar 

  3. Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    CAS  PubMed  Google Scholar 

  4. Sprent, J., Cho, J.H., Boyman, O. & Surh, C.D. T cell homeostasis. Immunol. Cell Biol. 86, 312–319 (2008).

    CAS  PubMed  Google Scholar 

  5. Sprent, J. & Tough, D.F. Lymphocyte life-span and memory. Science 265, 1395–1400 (1994).

    CAS  PubMed  Google Scholar 

  6. Cui, W. & Kaech, S.M. Generation of effector CD8+ T cells and their conversion to memory T cells. Immunol. Rev. 236, 151–166 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Szabolcs, P. et al. Coexistent naive phenotype and higher cycling rate of cord blood T cells as compared to adult peripheral blood. Exp. Hematol. 31, 708–714 (2003).

    PubMed  Google Scholar 

  8. Byrne, J.A., Stankovic, A.K. & Cooper, M.D. A novel subpopulation of primed T cells in the human fetus. J. Immunol. 152, 3098–3106 (1994).

    CAS  PubMed  Google Scholar 

  9. Dobber, R., Hertogh-Huijbregts, A., Rozing, J., Bottomly, K. & Nagelkerken, L. The involvement of the intestinal microflora in the expansion of CD4+ T cells with a naive phenotype in the periphery. Dev. Immunol. 2, 141–150 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Vos, Q., Jones, L.A. & Kruisbeek, A.M. Mice deprived of exogenous antigenic stimulation develop a normal repertoire of functional T cells. J. Immunol. 149, 1204–1210 (1992).

    CAS  PubMed  Google Scholar 

  11. Huang, T., Wei, B., Velazquez, P., Borneman, J. & Braun, J. Commensal microbiota alter the abundance and TCR responsiveness of splenic naive CD4+ T lymphocytes. Clin. Immunol. 117, 221–230 (2005).

    CAS  PubMed  Google Scholar 

  12. Hamilton, S.E., Wolkers, M.C., Schoenberger, S.P. & Jameson, S.C. The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat. Immunol. 7, 475–481 (2006).

    CAS  PubMed  Google Scholar 

  13. Napolitano, L.A. et al. Increased production of IL-7 accompanies HIV-1-mediated T-cell depletion: implications for T-cell homeostasis. Nat. Med. 7, 73–79 (2001).

    CAS  PubMed  Google Scholar 

  14. Guimond, M. et al. Interleukin 7 signaling in dendritic cells regulates the homeostatic proliferation and niche size of CD4+ T cells. Nat. Immunol. 10, 149–157 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Surh, C.D., Boyman, O., Purton, J.F. & Sprent, J. Homeostasis of memory T cells. Immunol. Rev. 211, 154–163 (2006).

    CAS  PubMed  Google Scholar 

  16. Haluszczak, C. et al. The antigen-specific CD8+ T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. J. Exp. Med. 206, 435–448 (2009).This study uses specific peptide-loaded MHC I tetramers to show that the unprimed repertoire of T cells for foreign peptides is much the same for naive and memory cells and applies to germ-free as well as normal mice. The data indicate that many memory-phenotype cells might be the progeny of cells that respond to self antigens.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. La Gruta, N.L. et al. Primary CTL response magnitude in mice is determined by the extent of naive T cell recruitment and subsequent clonal expansion. J. Clin. Invest. 120, 1885–1894 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Obar, J.J., Khanna, K.M. & Lefrancois, L. Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28, 859–869 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cho, J.H., Kim, H.O., Surh, C.D. & Sprent, J. T cell receptor-dependent regulation of lipid rafts controls naive CD8+ T cell homeostasis. Immunity 32, 214–226 (2010).The authors investigate why naive CD8+ T cells are more responsive than CD4+ T cells are to certain γ-chain cytokines and shows that tonic TCR signaling on CD8+ T cells induces high expression of lipid rafts, which in turn amplifies responsiveness to IL-2 and IL-15.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Moon, J.J. et al. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Garbi, N., Hammerling, G.J., Probst, H.C. & van den Broek, M. Tonic T cell signalling and T cell tolerance as opposite effects of self-recognition on dendritic cells. Curr. Opin. Immunol. 22, 601–608 (2010).

    CAS  PubMed  Google Scholar 

  22. Sebzda, E. et al. Mature T cell reactivity altered by peptide agonist that induces positive selection. J. Exp. Med. 183, 1093–1104 (1996).

    CAS  PubMed  Google Scholar 

  23. Li, Q.J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147–161 (2007).

    CAS  PubMed  Google Scholar 

  24. Grossman, Z. & Singer, A. Tuning of activation thresholds explains flexibility in the selection and development of T cells in the thymus. Proc. Natl. Acad. Sci. USA 93, 14747–14752 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Modiano, J.F., Johnson, L.D. & Bellgrau, D. Negative regulators in homeostasis of naive peripheral T cells. Immunol. Res. 41, 137–153 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ernst, B., Lee, D.-S., Chang, J.M., Sprent, J. & Surh, C.D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173–181 (1999).

    CAS  PubMed  Google Scholar 

  27. Kieper, W.C., Burghardt, J.T. & Surh, C.D. A role for TCR affinity in regulating naive T cell homeostasis. J. Immunol. 172, 40–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Stephen, T.L., Tikhonova, A., Riberdy, J.M. & Laufer, T.M. The activation threshold of CD4+ T cells is defined by TCR/peptide-MHC class II interactions in the thymic medulla. J. Immunol. 183, 5554–5562 (2009).

    CAS  PubMed  Google Scholar 

  29. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

    CAS  PubMed  Google Scholar 

  30. Chiang, Y.J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216–220 (2000).

    CAS  PubMed  Google Scholar 

  31. Teh, C.E., Daley, S.R., Enders, A. & Goodnow, C.C. T-cell regulation by casitas B-lineage lymphoma (Cblb) is a critical failsafe against autoimmune disease due to autoimmune regulator (Aire) deficiency. Proc. Natl. Acad. Sci. USA 107, 14709–14714 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tarakhovsky, A. et al. A role for CD5 in TCR-mediated signal transduction and thymocyte selection. Science 269, 535–537 (1995).

    CAS  PubMed  Google Scholar 

  33. Perez-Villar, J.J. et al. CD5 negatively regulates the T-cell antigen receptor signal transduction pathway: involvement of SH2-containing phosphotyrosine phosphatase SHP-1. Mol. Cell. Biol. 19, 2903–2912 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Teh, S.J., Killeen, N., Tarakhovsky, A., Littman, D.R. & Teh, H.S. CD2 regulates the positive selection and function of antigen-specific CD4CD8+ T cells. Blood 89, 1308–1318 (1997).

    CAS  PubMed  Google Scholar 

  35. Maile, R. et al. Peripheral “CD8 tuning” dynamically modulates the size and responsiveness of an antigen-specific T cell pool in vivo. J. Immunol. 174, 619–627 (2005).

    CAS  PubMed  Google Scholar 

  36. Park, J.H. et al. 'Coreceptor tuning': cytokine signals transcriptionally tailor CD8 coreceptor expression to the self-specificity of the TCR. Nat. Immunol. 8, 1049–1059 (2007).

    CAS  PubMed  Google Scholar 

  37. Takada, K. & Jameson, S.C. Self-class I MHC molecules support survival of naive CD8 T cells, but depress their functional sensitivity through regulation of CD8 expression levels. J. Exp. Med. 206, 2253–2269 (2009).Centering on the role of TCR-MHC interactions in T cell survival, this paper shows that depriving naive CD8+ cells of contact with MHC I ligands in nonlymphopenic hosts leads to a shortened lifespan but upregulation of CD8 expression in the surviving cells. The cells are thereby retuned to give enhanced responses to foreign antigens, but only to weak antigens.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, J.O. The yins of T cell activation. Sci. STKE 265, re1 (2005).

    Google Scholar 

  39. Lin, L., Spoor, M.S., Gerth, A.J., Brody, S.L. & Peng, S.L. Modulation of Th1 activation and inflammation by the NF-κB repressor Foxj1. Science 303, 1017–1020 (2004).

    CAS  PubMed  Google Scholar 

  40. Lin, L., Hron, J.D. & Peng, S.L. Regulation of NF-κB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a. Immunity 21, 203–213 (2004).

    CAS  PubMed  Google Scholar 

  41. Dejean, A.S. et al. Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat. Immunol. 10, 504–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yalcin, S. et al. ROS-mediated amplification of AKT/mTOR signalling pathway leads to myeloproliferative syndrome in Foxo3−/− mice. EMBO J. 29, 4118–4131 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Xanthoudakis, S. et al. An enhanced immune response in mice lacking the transcription factor NFAT1. Science 272, 892–895 (1996).

    CAS  PubMed  Google Scholar 

  44. Baksh, S. et al. NFATc2-mediated repression of cyclin-dependent kinase 4 expression. Mol. Cell 10, 1071–1081 (2002).

    CAS  PubMed  Google Scholar 

  45. Tzachanis, D. et al. Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat. Immunol. 2, 1174–1182 (2001).

    CAS  PubMed  Google Scholar 

  46. Hua, X. & Thompson, C.B. Quiescent T cells: actively maintaining inactivity. Nat. Immunol. 2, 1097–1098 (2001).

    CAS  PubMed  Google Scholar 

  47. Buckley, A.F., Kuo, C.T. & Leiden, J.M. Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc–dependent pathway. Nat. Immunol. 2, 698–704 (2001).

    CAS  PubMed  Google Scholar 

  48. Yamada, T., Park, C.S., Mamonkin, M. & Lacorazza, H.D. Transcription factor ELF4 controls the proliferation and homing of CD8+ T cells via the Kruppel-like factors KLF4 and KLF2. Nat. Immunol. 10, 618–626 (2009).The authors investigate the control of naive T cell quiescence and show that Elf4−/− and Klf4−/− mice both develop a progressive increase in the number of memory-phenotype CD8+ cells. The data suggest that in normal CD8+ cells, ELF4 induces synthesis of KLF4, which serves to maintain cell-cycle arrest.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Feng, X. et al. Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development. Blood 115, 510–518 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fujikawa, K. et al. Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells. J. Exp. Med. 198, 1595–1608 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cotta-de-Almeida, V. et al. Wiskott Aldrich syndrome protein (WASP) and N-WASP are critical for T cell development. Proc. Natl. Acad. Sci. USA 104, 15424–15429 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Roy, E. et al. Nck adaptors are positive regulators of the size and sensitivity of the T-cell repertoire. Proc. Natl. Acad. Sci. USA 107, 15529–15534 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, Z. et al. Memory T cell RNA rearrangement programmed by heterogeneous nuclear ribonucleoprotein hnRNPLL. Immunity 29, 863–875 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Randall, K.L. et al. Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nat. Immunol. 10, 1283–1291 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jha, M.K. et al. Defective survival of naive CD8+ T lymphocytes in the absence of the beta3 regulatory subunit of voltage-gated calcium channels. Nat. Immunol. 10, 1275–1282 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Tough, D.F. & Sprent, J. Turnover of naive- and memory-phenotype T cells. J. Exp. Med. 179, 1127–1135 (1994).

    CAS  PubMed  Google Scholar 

  57. Murali-Krishna, K. et al. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286, 1377–1381 (1999).

    CAS  PubMed  Google Scholar 

  58. Tanchot, C., Lemonnier, F.A., Pérarnau, B., Freitas, A.A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276, 2057–2062 (1997).

    CAS  PubMed  Google Scholar 

  59. Labrecque, N. et al. How much TCR does a T cell need? Immunity 15, 71–82 (2001).

    CAS  PubMed  Google Scholar 

  60. Polic, B., Kunkel, D., Scheffold, A. & Rajewsky, K. How αβ T cells deal with induced TCRα ablation. Proc. Natl. Acad. Sci. USA 98, 8744–8749 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rooke, R., Waltzinger, C., Benoist, C. & Mathis, D. Targeted complemetation of MHC class II deficiency by intrathymic delivery of recombinant adenoviruses. Immunity 7, 123–134 (1997).

    CAS  PubMed  Google Scholar 

  62. Surh, C.D. & Sprent, J. Regulation of mature T cell homeostasis. Semin. Immunol. 17, 183–191 (2005).

    CAS  PubMed  Google Scholar 

  63. Takeda, S., Rodewald, H.-R., Arakawa, H., Bluethmann, H. & Shimizu, T. MHC class II molecules are not required for survival of newly generated CD4+ T cells but affect their long-term life span. Immunity 5, 217–228 (1996).

    CAS  PubMed  Google Scholar 

  64. Dorfman, J.R., Stefanova, I., Yasutomo, K. & Germain, R.N. CD4+ T cells survival is not directly linked to self-MHC-induced TCR signaling. Nat. Immunol. 1, 329–335 (2000).

    CAS  PubMed  Google Scholar 

  65. Grandjean, I. et al. Are major histocompatibility complex molecules involved in the survival of naive CD4+ T cells? J. Exp. Med. 198, 1089–1102 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Martin, B., Bourgeois, C., Dautigny, N. & Lucas, B. On the role of MHC class II molecules in the survival and lymphopenia-induced proliferation of peripheral CD4+ T cells. Proc. Natl. Acad. Sci. USA 100, 6021–6026 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fischer, U.B. et al. MHC class II deprivation impairs CD4 T cell motility and responsiveness to antigen-bearing dendritic cells in vivo. Proc. Natl. Acad. Sci. USA 104, 7181–7186 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Stefanova, I., Dorfman, J.R. & Germain, R.N. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420, 429–434 (2002).

    CAS  PubMed  Google Scholar 

  69. Hochweller, K. et al. Dendritic cells control T cell tonic signaling required for responsiveness to foreign antigen. Proc. Natl. Acad. Sci. USA 107, 5931–5936 (2010).In seeming contrast to the findings of Takada and Jameson (ref. 37 ), this paper shows that in situ ablation of CD11c+ dendritic cells leads to much lower responses by naive CD4+ cells and CD8+ cells to foreign antigens, correlating with lower expression of TCRζ in these cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Smith, K. et al. Sensory adaptation in naive peripheral CD4 T cells. J. Exp. Med. 194, 1253–1261 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bhandoola, A. et al. Peripheral expression of self-MHC-II influences the reactivity and self-tolerance of mature CD4+ T cells: evidence from a lymphopenic T cell model. Immunity 17, 425–436 (2002).

    CAS  PubMed  Google Scholar 

  72. Jubala, C.M. et al. MHC-dependent desensitization of intrinsic anti-self reactivity. Cancer Immunol. Immunother. 58, 171–185 (2009).

    CAS  PubMed  Google Scholar 

  73. Fink, P.J. & Bevan, M.J. Positive selection of thymocytes. Adv. Immunol. 59, 99–133 (1995).

    CAS  PubMed  Google Scholar 

  74. Yachi, P.P., Ampudia, J., Gascoigne, N.R. & Zal, T. Nonstimulatory peptides contribute to antigen-induced CD8-T cell receptor interaction at the immunological synapse. Nat. Immunol. 6, 785–792 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Anikeeva, N. et al. Quantum dot/peptide-MHC biosensors reveal strong CD8-dependent cooperation between self and viral antigens that augment the T cell response. Proc. Natl. Acad. Sci. USA 103, 16846–16851 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Krogsgaard, M. et al. Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature 434, 238–243 (2005).

    CAS  PubMed  Google Scholar 

  77. Lo, W.L. et al. An endogenous peptide positively selects and augments the activation and survival of peripheral CD4+ T cells. Nat. Immunol. 10, 1155–1161 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Schluns, K.S. & Lefrancois, L. Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol. 3, 269–279 (2003).

    CAS  PubMed  Google Scholar 

  79. Jacobs, S.R., Michalek, R.D. & Rathmell, J.C. IL-7 is essential for homeostatic control of T cell metabolism in vivo. J. Immunol. 184, 3461–3469 (2010).

    CAS  PubMed  Google Scholar 

  80. Khaled, A.R. & Durum, S.K. Lymphocide: cytokines and the control of lymphoid homeostasis. Nat. Rev. Immunol. 2, 817–830 (2002).

    CAS  PubMed  Google Scholar 

  81. Rathmell, J.C., Farkash, E.A., Gao, W. & Thompson, C.B. IL-7 enhances the survival and maintains the size of naive T cells. J. Immunol. 167, 6869–6876 (2001).

    CAS  PubMed  Google Scholar 

  82. Repass, J.F. et al. IL7-hCD25 and IL7-Cre BAC transgenic mouse lines: new tools for analysis of IL-7 expressing cells. Genesis 47, 281–287 (2009).

    CAS  PubMed  Google Scholar 

  83. Shalapour, S. et al. Commensal microflora and interferon-γ promote steady-state interleukin-7 production in vivo. Eur. J. Immunol. 40, 2391–2400 (2010).

    CAS  PubMed  Google Scholar 

  84. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255–1265 (2007).

    CAS  PubMed  Google Scholar 

  85. Park, J.H. et al. Suppression of IL7Ralpha transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. Immunity 21, 289–302 (2004).

    CAS  PubMed  Google Scholar 

  86. Kerdiles, Y.M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009).Complementing the work of Ouyang et al . (ref. 87 ), studies of the effect of deleting Foxo1 in T cells show that Foxo1 maintains the viability of naive T cells by inducing upregulation of IL-7Ra and the lymph node–homing receptors CD62L and CCR7. High expression of CCR7 enables T cells to reach IL-7-rich environments.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ouyang, W., Beckett, O., Flavell, R.A. & Li, M.O. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30, 358–371 (2009).Along with the work of Kerdiles et al . (ref. 86 ), this paper shows that Foxo1 deletion in T cells decreases IL-7Ra expression, leading to fewer naive T cells and more activated or memory T cells. The authors suggest that Foxo1 somehow prevents the activation of T cells by commensal bacteria.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Gubbels Bupp, M.R. et al. T cells require Foxo1 to populate the peripheral lymphoid organs. Eur. J. Immunol. 39, 2991–2999 (2009).

    CAS  PubMed  Google Scholar 

  89. Carlson, C.M. et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442, 299–302 (2006).

    CAS  PubMed  Google Scholar 

  90. Bai, A., Hu, H., Yeung, M. & Chen, J. Kruppel-like factor 2 controls T cell trafficking by activating L-selectin (CD62L) and sphingosine-1-phosphate receptor 1 transcription. J. Immunol. 178, 7632–7639 (2007).

    CAS  PubMed  Google Scholar 

  91. Berger, M. et al. An Slfn2 mutation causes lymphoid and myeloid immunodeficiency due to loss of immune cell quiescence. Nat. Immunol. 11, 335–343 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Berard, M., Brandt, K., Bulfone-Paus, S. & Tough, D.F. IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J. Immunol. 170, 5018–5026 (2003).

    CAS  PubMed  Google Scholar 

  93. Cho, J.H. et al. An intense form of homeostatic proliferation of naive CD8+ cells driven by IL-2. J. Exp. Med. 204, 1787–1801 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Boyman, O., Ramsey, C., Kim, D.M., Sprent, J. & Surh, C.D. IL-7/anti-IL-7 mAb complexes restore T cell development and induce homeostatic T cell expansion without lymphopenia. J. Immunol. 180, 7265–7275 (2008).

    CAS  PubMed  Google Scholar 

  95. Melchionda, F. et al. Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J. Clin. Invest. 115, 1177–1187 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kieper, W.C. et al. Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J. Immunol. 174, 3158–3163 (2005).

    CAS  PubMed  Google Scholar 

  97. Min, B. et al. Neonates support lymphopenia-induced proliferation. Immunity 18, 131–140 (2003).

    CAS  PubMed  Google Scholar 

  98. Boyman, O., Cho, J.H., Tan, J.T., Surh, C.D. & Sprent, J. A major histocompatibility complex class I-dependent subset of memory phenotype CD8+ cells. J. Exp. Med. 203, 1817–1825 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Purton, J.F. et al. Antiviral CD4+ memory T cells are IL-15 dependent. J. Exp. Med. 204, 951–961 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, Y., Seidl, T., Whittall, T., Babaahmady, K. & Lehner, T. Stress-activated dendritic cells interact with CD4+ T cells to elicit homeostatic memory. Eur. J. Immunol. 40, 1628–1638 (2010).

    CAS  PubMed  Google Scholar 

  101. Li, O. et al. Massive and destructive T cell response to homeostatic cue in CD24-deficient lymphopenic hosts. J. Exp. Med. 203, 1713–1720 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Rothlin, C.V. & Lemke, G. TAM receptor signaling and autoimmune disease. Curr. Opin. Immunol. 22, 740–746 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Martin, C.E., Kim, D.M., Sprent, J. & Surh, C.D. Is IL-7 from dendritic cells essential for the homeostasis of CD4+ T cells? Nat. Immunol. 11, 547–548 (2010).

    CAS  PubMed  Google Scholar 

  104. Boyman, O., Kovar, M., Rubinstein, M.P., Surh, C.D. & Sprent, J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311, 1924–1927 (2006).

    CAS  PubMed  Google Scholar 

  105. Weinreich, M.A., Odumade, O.A., Jameson, S.C. & Hogquist, K.A. T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat. Immunol. 11, 709–716 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Maroof, A., Beattie, L., Kirby, A., Coles, M. & Kaye, P.M. Dendritic cells matured by inflammation induce CD86-dependent priming of naive CD8+ T cells in the absence of their cognate peptide antigen. J. Immunol. 183, 7095–7103 (2009).

    CAS  PubMed  Google Scholar 

  107. Probst, H.C., McCoy, K., Okazaki, T., Honjo, T. & van den Broek, M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat. Immunol. 6, 280–286 (2005).

    CAS  PubMed  Google Scholar 

  108. Hale, J.S., Wubeshet, M. & Fink, P.J. TCR revision generates functional CD4+ T cells. J. Immunol. 185, 6528–6534 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the National Health and Medical Research Council (Australia), the National Institutes of Health (USA) and a World Class University program from the National Research Foundation (Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Sprent.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprent, J., Surh, C. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat Immunol 12, 478–484 (2011). https://doi.org/10.1038/ni.2018

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2018

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing