Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The splicing regulator PTBP2 interacts with the cytidine deaminase AID and promotes binding of AID to switch-region DNA

Abstract

During immunoglobulin class-switch recombination (CSR), the cytidine deaminase AID induces double-strand breaks into transcribed, repetitive DNA elements called switch sequences. The mechanism that promotes the binding of AID specifically to switch regions remains to be elucidated. Here we used a proteomic screen with in vivo biotinylation of AID to identify the splicing regulator PTBP2 as a protein that interacts with AID. Knockdown of PTBP2 mediated by short hairpin RNA in B cells led to a decrease in binding of AID to transcribed switch regions, which resulted in considerable impairment of CSR. PTBP2 is thus an effector of CSR that promotes the binding of AID to switch-region DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AID interacts with PTBP2.
Figure 2: Knockdown of PTBP2 impairs CSR.
Figure 3: Germline transcription is unaffected in cells with knockdown of PTBP2.
Figure 4: The expression and nuclear localization of AID are not altered in cells with knockdown of PTBP2.
Figure 5: PTBP2 binds S transcripts in vitro.
Figure 6: PTBP2 promotes the binding of AID to S-region DNA.
Figure 7: Knockdown of PTBP2 impairs CSR and the binding of AID to activated S regions in primary B cells.

Similar content being viewed by others

References

  1. Jung, D. & Alt, F.W. Unraveling V(D)J recombination: Insights into gene regulation. Cell 116, 299–311 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Stavnezer, J., Guikema, J.E. & Schrader, C.E. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chaudhuri, J. et al. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv. Immunol. 94, 157–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Delker, R.K., Fugmann, S.D. & Papavasiliou, F.N. A coming-of-age story: activation-induced cytidine deaminase turns 10. Nat. Immunol. 10, 1147–1153 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Goodman, M.F., Scharff, M.D. & Romesberg, F.E. AID-initiated purposeful mutations in immunoglobulin genes. Adv. Immunol. 94, 127–155 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Liu, M. et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature 451, 841–845 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Robbiani, D.F. et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135, 1028–1038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pasqualucci, L. et al. AID is required for germinal center-derived lymphomagenesis. Nat. Genet. 40, 108–112 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Yang, S.Y. & Schatz, D.G. Targeting of AID-mediated sequence diversification by cis-acting determinants. Adv. Immunol. 94, 109–125 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Chaudhuri, J., Khuong, C. & Alt, F.W. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430, 992–998 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. MacDuff, D.A., Neuberger, M.S. & Harris, R.S. MDM2 can interact with the C-terminus of AID but it is inessential for antibody diversification in DT40 B cells. Mol. Immunol. 43, 1099–1108 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Conticello, S.G. et al. Interaction between antibody-diversification enzyme AID and spliceosome-associated factor CTNNBL1. Mol. Cell 31, 474–484 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. de Boer, E. et al. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 100, 7480–7485 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura, M. et al. High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+ cells. Int. Immunol. 8, 193–201 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Basu, U. et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature 438, 508–511 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. McBride, K.M. et al. Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation. Proc. Natl. Acad. Sci. USA 103, 8798–8803 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pasqualucci, L., Kitaura, Y., Gu, H. & Dalla-Favera, R. PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells. Proc. Natl. Acad. Sci. USA 103, 395–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Boutz, P.L. et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 21, 1636–1652 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sawicka, K., Bushell, M., Spriggs, K.A. & Willis, A.E. Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem. Soc. Trans. 36, 641–647 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Sharma, S. Isolation of a sequence-specific RNA binding protein, polypyrimidine tract binding protein, using RNA affinity chromatography. Methods Mol. Biol. 488, 1–8 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Lorenz, M., Jung, S. & Radbruch, A. Switch transcripts in immunoglobulin class switching. Science 267, 1825–1828 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Perlot, T., Li, G. & Alt, F.W. Antisense transcripts from immunoglobulin heavy-chain locus V(D)J and switch regions. Proc. Natl. Acad. Sci. USA 105, 3843–3848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rush, J.S., Liu, M., Odegard, V.H., Unniraman, S. & Schatz, D.G. Expression of activation-induced cytidine deaminase is regulated by cell division, providing a mechanistic basis for division-linked class switch recombination. Proc. Natl. Acad. Sci. USA 102, 13242–13247 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Black, D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Matlin, A.J., Clark, F. & Smith, C.W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Ashiya, M. & Grabowski, P.J. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart. RNA 3, 996–1015 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Polydorides, A.D., Okano, H.J., Yang, Y.Y., Stefani, G. & Darnell, R.B. A brain-enriched polypyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific alternative splicing. Proc. Natl. Acad. Sci. USA 97, 6350–6355 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Markovtsov, V. et al. Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol. Cell. Biol. 20, 7463–7479 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chaudhuri, J. & Alt, F.W. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat. Rev. Immunol. 4, 541–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Luco, R.F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xue, Y. et al. Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. Mol. Cell 36, 996–1006 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pavri, R. et al. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 143, 122–133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vuong, B.Q. et al. Specific recruitment of protein kinase A to the immunoglobulin locus regulates class-switch recombination. Nat. Immunol. 10, 420–426 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dignam, J.D., Lebovitz, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Honjo (University of Kyoto) for AID-deficient (Aicda−/−) mice and CH12 cells; S. Orkin (Harvard Medical School) for the biotag vector and BirA plasmids and all members of the Chaudhuri laboratory for discussions and suggestions. Supported by the Damon Runyon Cancer Research Fund (J.C.), the Alfred Bressler Foundation (J.C.), the National Institutes of Health (J.C.) and the Cancer Research Institute (U.N.).

Author information

Authors and Affiliations

Authors

Contributions

U.N. and J.C. designed and did experiments, analyzed the data and wrote the manuscript; and A.J.M. did the shRNA knockdown for the AID-localization studies and with S.Z. established shRNA knockdown techniques in CH12 cells.

Corresponding author

Correspondence to Jayanta Chaudhuri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–19 and Supplementary Table 1 (PDF 1020 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, U., Matthews, A., Zheng, S. et al. The splicing regulator PTBP2 interacts with the cytidine deaminase AID and promotes binding of AID to switch-region DNA. Nat Immunol 12, 160–166 (2011). https://doi.org/10.1038/ni.1977

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1977

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing