Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The transcription cofactor Hopx is required for regulatory T cell function in dendritic cell–mediated peripheral T cell unresponsiveness

Abstract

Induced regulatory T cells (iTreg cells) can be generated by peripheral dendritic cells (DCs) that mediate T cell unresponsiveness to rechallenge with antigen. The molecular factors required for the function of such iTreg cells remain unknown. We report a critical role for the transcription cofactor homeodomain-only protein (Hop; also known as Hopx) in iTreg cells to mediate T cell unresponsiveness in vivo. Hopx-sufficient iTreg cells downregulated expression of the transcription factor AP-1 complex and suppressed other T cells. In the absence of Hopx, iTreg cells had high expression of the AP-1 complex, proliferated and failed to mediate T cell unresponsiveness to rechallenge with antigen. Thus, Hopx is required for the function of Treg cells induced by DCs and the promotion of DC-mediated T cell unresponsiveness in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hopx expressed in iTreg cells is required for T cell unresponsiveness.
Figure 2: Hopx-deficient iTreg cells express Treg cell–specific genes but fail to mediate T cell unresponsiveness in vivo.
Figure 3: Hopx-dependent expression of proliferation-related genes in DC-induced Treg cells.
Figure 4: Hopx maintains the state of anergy in DC-induced Treg cells.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. von Boehmer, H. et al. Thymic selection revisited: how essential is it? Immunol. Rev. 191, 62–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Schwartz, R.H. Natural regulatory T cells and self-tolerance. Nat. Immunol. 6, 327–330 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Tang, Q. & Bluestone, J.A. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat. Immunol. 9, 239–244 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mathis, D. & Benoist, C. Aire. Annu. Rev. Immunol. 27, 287–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol. 6, 1219–1227 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Travis, M.A. et al. Loss of integrin αVβ8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449, 361–365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun, C.M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamazaki, S. et al. CD8+CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J. Immunol. 181, 6923–6933 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Hill, J.A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Vignali, D. How many mechanisms do regulatory T cells need? Eur. J. Immunol. 38, 908–911 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Curotto de Lafaille, M.A. et al. Adaptive Foxp3+ regulatory T cell-dependent and -independent control of allergic inflammation. Immunity 29, 114–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Lu, L.F. & Rudensky, A. Molecular orchestration of differentiation and function of regulatory T cells. Genes Dev. 23, 1270–1282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feuerer, M., Hill, J.A., Mathis, D. & Benoist, C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat. Immunol. 10, 689–695 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Gavin, M.A., Clarke, S.R., Negrou, E., Gallegos, A. & Rudensky, A. Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nat. Immunol. 3, 33–41 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol. 3, 756–763 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Sugimoto, N. et al. Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int. Immunol. 18, 1197–1209 (2006).

    CAS  PubMed  Google Scholar 

  20. Gavin, M.A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Fisson, S. et al. Continuous activation of autoreactive CD4+CD25+ regulatory T cells in the steady state. J. Exp. Med. 198, 737–746 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klein, L., Khazaie, K. & von Boehmer, H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc. Natl. Acad. Sci. USA 100, 8886–8891 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kang, S.M. et al. Transactivation by AP-1 is a molecular target of T cell clonal anergy. Science 257, 1134–1138 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Sundstedt, A. et al. In vivo anergized CD4+ T cells express perturbed AP-1 and NF-κB transcription factors. Proc. Natl. Acad. Sci. USA 93, 979–984 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schwartz, R.H. T cell clonal anergy. Curr. Opin. Immunol. 9, 351–357 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Shaulian, E. & Karin, M. AP-1 in cell proliferation and survival. Oncogene 20, 2390–2400 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Williams, L.M. & Rudensky, A.Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol. 8, 277–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, S.M., Gao, B. & Fang, D. FoxP3 maintains Treg unresponsiveness by selectively inhibiting the promoter DNA-binding activity of AP-1. Blood 111, 3599–3606 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Shin, C.H. et al. Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Cell 110, 725–735 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, F. et al. Hop is an unusual homeobox gene that modulates cardiac development. Cell 110, 713–723 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Yin, Z. et al. Hop functions downstream of Nkx2.1 and GATA6 to mediate HDAC-dependent negative regulation of pulmonary gene expression. Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L191–L199 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Kee, H.J. et al. Enhancer of polycomb1, a novel homeodomain only protein-binding partner, induces skeletal muscle differentiation. J. Biol. Chem. 282, 7700–7709 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–779 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hawiger, D., Masilamani, R.F., Bettelli, E., Kuchroo, V.K. & Nussenzweig, M.C. Immunological unresponsiveness characterized by increased expression of CD5 on peripheral T cells induced by dendritic cells in vivo. Immunity 20, 695–705 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Kretschmer, K., Apostolou, I., Jaeckel, E., Khazaie, K. & von Boehmer, H. Making regulatory T cells with defined antigen specificity: role in autoimmunity and cancer. Immunol. Rev. 212, 163–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Brunkow, M.E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Wan, Y.Y. & Flavell, R.A. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc. Natl. Acad. Sci. USA 102, 5126–5131 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326 (1999).

    CAS  PubMed  Google Scholar 

  42. Steinman, R.M., Adams, J.C. & Cohn, Z.A. Identification of a novel cell type in peripheral lymphoid organs of mice. IV. Identification and distribution in mouse spleen. J. Exp. Med. 141, 804–820 (1975).

    Article  CAS  PubMed  Google Scholar 

  43. Steinman, R.M., Kaplan, G., Witmer, M.D. & Cohn, Z.A. Identification of a novel cell type in peripheral lymphoid organs of mice. V. Purification of spleen dendritic cells, new surface markers, and maintenance in vitro. J. Exp. Med. 149, 1–16 (1979).

    Article  CAS  PubMed  Google Scholar 

  44. Steinman, R.M. & Witmer, M.D. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc. Natl. Acad. Sci. USA 75, 5132–5136 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wing, K. & Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol. 11, 7–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Norman, C., Runswick, M., Pollock, R. & Treisman, R. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55, 989–1003 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Olson (University of Texas Southwestern Medical Center) for Hopx−/− mice; T. Taylor for help with cell sorting; and L. Zenewicz and F. Manzo for help during preparation of the manuscript. Supported by the American Diabetes Society (D.H.), the National Multiple Sclerosis Society (TA 3024A1/2 to D.H.) and the Howard Hughes Medical Institute (R.A.F.).

Author information

Authors and Affiliations

Authors

Contributions

D.H. designed and did experiments, interpreted data and wrote the manuscript; Y.Y.W. produced FIR mice; E.E.E. contributed to interpretation of data; and R.A.F. oversaw the experimental design, interpreted data and wrote the manuscript.

Corresponding author

Correspondence to Richard A Flavell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 1512 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawiger, D., Wan, Y., Eynon, E. et al. The transcription cofactor Hopx is required for regulatory T cell function in dendritic cell–mediated peripheral T cell unresponsiveness. Nat Immunol 11, 962–968 (2010). https://doi.org/10.1038/ni.1929

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1929

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing