Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell–licensed DCs


Cross-priming allows dendritic cells (DCs) to induce cytotoxic T cell (CTL) responses to extracellular antigens. DCs require cognate 'licensing' for cross-priming, classically by helper T cells. Here we demonstrate an alternative mechanism for cognate licensing by natural killer T (NKT) cells recognizing microbial or synthetic glycolipid antigens. Such licensing caused cross-priming CD8α+ DCs to produce the chemokine CCL17, which attracted naive CTLs expressing the chemokine receptor CCR4. In contrast, DCs licensed by helper T cells recruited CTLs using CCR5 ligands. Thus, depending on the type of antigen they encounter, DCs can be licensed for cross-priming by NKT cells or helper T cells and use at least two independent chemokine pathways to attract naive CTLs. Because these chemokines acted synergistically, this can potentially be exploited to improve vaccinations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Cognate NKT cell licensing of splenic DCs for cross-priming.
Figure 2: NKT cell–licensed cross-priming requires CCL17 and CCR4.
Figure 3: NKT cells induce CCL17 in splenic DCs.
Figure 4: CCL17 enhances cross-priming neither by activating DCs nor by recruiting NKT cells.
Figure 5: Splenic DC–derived CCL17 acts directly on CTLs.
Figure 6: DC-derived CCL17 recruits CTLs into the splenic T cell–DC zone.
Figure 7: CCL17 improves the directional migration of CTLs toward CCL17-producing DCs and increases their contact time.
Figure 8: Helper T cell– and NKT cell–licensed cross-priming are synergistically regulated by distinct chemokines.


  1. 1

    Carbone, F.R., Kurts, C., Bennett, S.R., Miller, J.F. & Heath, W.R. Cross-presentation: a general mechanism for CTL immunity and tolerance. Immunol. Today 19, 368–373 (1998).

    CAS  Article  Google Scholar 

  2. 2

    den Haan, J.M., Lehar, S.M. & Bevan, M.J. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192, 1685–1696 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Shortman, K. & Naik, S.H. Steady-state and inflammatory dendritic-cell development. Nat. Rev. Immunol. 7, 19–30 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Kurts, C., Kosaka, H., Carbone, F.R., Miller, J.F. & Heath, W.R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8(+) T cells. J. Exp. Med. 186, 239–245 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Lukacs-Kornek, V. et al. The kidney-renal lymph node-system contributes to cross-tolerance against innocuous circulating antigen. J. Immunol. 180, 706–715 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Bennett, S.R., Carbone, F.R., Karamalis, F., Miller, J.F. & Heath, W.R. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J. Exp. Med. 186, 65–70 (1997).

    CAS  Article  Google Scholar 

  7. 7

    Bevan, M.J. Helping the CD8+ T-cell response. Nat. Rev. Immunol. 4, 595–602 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Smith, C.M. et al. Cognate CD4+ T cell licensing of dendritic cells in CD8+ T cell immunity. Nat. Immunol. 5, 1143–1148 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Janssen, E.M. et al. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434, 88–93 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Lutz, M.B. & Kurts, C. Induction of peripheral CD4+ T-cell tolerance and CD8+ T-cell cross-tolerance by dendritic cells. Eur. J. Immunol. 39, 2325–2330 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Bromley, S.K., Mempel, T.R. & Luster, A.D. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat. Immunol. 9, 970–980 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Castellino, F. et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440, 890–895 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Heymann, F. et al. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J. Clin. Invest. 119, 1286–1297 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Hugues, S. et al. Dynamic imaging of chemokine-dependent CD8+ T cell help for CD8+ T cell responses. Nat. Immunol. 8, 921–930 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Fujii, S., Shimizu, K., Kronenberg, M. & Steinman, R.M. Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs. Nat. Immunol. 3, 867–874 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Stober, D., Jomantaite, I., Schirmbeck, R. & Reimann, J. NKT cells provide help for dendritic cell-dependent priming of MHC class I-restricted CD8+ T cells in vivo. J. Immunol. 170, 2540–2548 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Fujii, S., Liu, K., Smith, C., Bonito, A.J. & Steinman, R.M. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J. Exp. Med. 199, 1607–1618 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Godfrey, D.I. & Kronenberg, M. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114, 1379–1388 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Van Kaer, L. NKT cells: T lymphocytes with innate effector functions. Curr. Opin. Immunol. 19, 354–364 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Tupin, E., Kinjo, Y. & Kronenberg, M. The unique role of natural killer T cells in the response to microorganisms. Nat. Rev. Microbiol. 5, 405–417 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Kawano, T. et al. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    CAS  Article  Google Scholar 

  22. 22

    Kinjo, Y. et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520–525 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Kinjo, Y. et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7, 978–986 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Florence, W.C. et al. Adaptability of the semi-invariant natural killer T-cell receptor towards structurally diverse CD1d-restricted ligands. EMBO J. 28, 3579–3590 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Scott-Browne, J.P. et al. Germline-encoded recognition of diverse glycolipids by natural killer T cells. Nat. Immunol. 8, 1105–1113 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Yoshimoto, T. & Paul, W.E. CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J. Exp. Med. 179, 1285–1295 (1994).

    CAS  Article  Google Scholar 

  29. 29

    Kitamura, H. et al. The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med. 189, 1121–1128 (1999).

    CAS  Article  Google Scholar 

  30. 30

    Fujii, S., Shimizu, K., Smith, C., Bonifaz, L. & Steinman, R.M. Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med. 198, 267–279 (2003).

    CAS  Article  Google Scholar 

  31. 31

    Hermans, I.F. et al. NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J. Immunol. 171, 5140–5147 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Kim, C.H., Johnston, B. & Butcher, E.C. Trafficking machinery of NKT cells: shared and differential chemokine receptor expression among Vα24+Vβ11+ NKT cell subsets with distinct cytokine-producing capacity. Blood 100, 11–16 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Thomas, S.Y. et al. CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J. Immunol. 171, 2571–2580 (2003).

    CAS  Article  Google Scholar 

  34. 34

    Meyer, E.H. et al. iNKT cells require CCR4 to localize to the airways and to induce airway hyperreactivity. J. Immunol. 179, 4661–4671 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Andrew, D.P. et al. C–C chemokine receptor 4 expression defines a major subset of circulating nonintestinal memory T cells of both Th1 and Th2 potential. J. Immunol. 166, 103–111 (2001).

    CAS  Article  Google Scholar 

  36. 36

    Freeman, C.M. et al. CCR4 participation in Th type 1 (mycobacterial) and Th type 2 (schistosomal) anamnestic pulmonary granulomatous responses. J. Immunol. 177, 4149–4158 (2006).

    CAS  Article  Google Scholar 

  37. 37

    Sallusto, F., Lenig, D., Mackay, C.R. & Lanzavecchia, A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187, 875–883 (1998).

    CAS  Article  Google Scholar 

  38. 38

    Campbell, J.J. et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 400, 776–780 (1999).

    CAS  Article  Google Scholar 

  39. 39

    Kawasaki, S. et al. Intervention of thymus and activation-regulated chemokine attenuates the development of allergic airway inflammation and hyperresponsiveness in mice. J. Immunol. 166, 2055–2062 (2001).

    CAS  Article  Google Scholar 

  40. 40

    Alferink, J. et al. Compartmentalized production of CCL17 in vivo: strong inducibility in peripheral dendritic cells contrasts selective absence from the spleen. J. Exp. Med. 197, 585–599 (2003).

    CAS  Article  Google Scholar 

  41. 41

    Horikawa, T. et al. IFN-γ-inducible expression of thymus and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 in epidermal keratinocytes and their roles in atopic dermatitis. Int. Immunol. 14, 767–773 (2002).

    CAS  Article  Google Scholar 

  42. 42

    Campbell, J.J., O'Connell, D.J. & Wurbel, M.A. Cutting edge: chemokine receptor CCR4 is necessary for antigen-driven cutaneous accumulation of CD4 T cells under physiological conditions. J. Immunol. 178, 3358–3362 (2007).

    CAS  Article  Google Scholar 

  43. 43

    Katou, F. et al. Macrophage-derived chemokine (MDC/CCL22) and CCR4 are involved in the formation of T lymphocyte-dendritic cell clusters in human inflamed skin and secondary lymphoid tissue. Am. J. Pathol. 158, 1263–1270 (2001).

    CAS  Article  Google Scholar 

  44. 44

    Lieberam, I. & Forster, I. The murine β-chemokine TARC is expressed by subsets of dendritic cells and attracts primed CD4+ T cells. Eur. J. Immunol. 29, 2684–2694 (1999).

    CAS  Article  Google Scholar 

  45. 45

    Gonzalo, J.A. et al. Mouse monocyte-derived chemokine is involved in airway hyperreactivity and lung inflammation. J. Immunol. 163, 403–411 (1999).

    CAS  PubMed  Google Scholar 

  46. 46

    de Lavareille, A. et al. Clonal Th2 cells associated with chronic hypereosinophilia: TARC-induced CCR4 down-regulation in vivo. Eur. J. Immunol. 31, 1037–1046 (2001).

    CAS  Article  Google Scholar 

  47. 47

    Kondo, T. & Takiguchi, M. Human memory CCR4+CD8+ T cell subset has the ability to produce multiple cytokines. Int. Immunol. 21, 523–532 (2009).

    CAS  Article  Google Scholar 

  48. 48

    Kaech, S.M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol. 2, 415–422 (2001).

    CAS  Article  Google Scholar 

  49. 49

    van Stipdonk, M.J. et al. Dynamic programming of CD8+ T lymphocyte responses. Nat. Immunol. 4, 361–365 (2003).

    CAS  Article  Google Scholar 

  50. 50

    Long, X. et al. Synthesis and evaluation of stimulatory properties of Sphingomonadaceae glycolipids. Nat. Chem. Biol. 3, 559–564 (2007).

    CAS  Article  Google Scholar 

  51. 51

    Du, W., Kulkarni, S.S. & Gervay-Hague, J. Efficient, one-pot syntheses of biologically active α-linked glycolipids. Chem. Commun. (Camb.) 23, 2336–2338 (2007).

    Article  Google Scholar 

Download references


We thank W. Keßler (University of Greifswald) for CCR4-deficient mice; F. Tacke (University of Aachen) for CD1d- and MHC class II–deficient mice; R. Goldszmid (National Institute of Allergy and Infectious Diseases, National Institutes of Health) for CD8-deficient mice; J. Alferink (University of Bonn) for CCL17-eGFP knock-in mice; A. Peters for technical assistance; C. Coch and Rolf Fimmers for advice on statistics; and the Central Animal Facilities and the Flow Cytometry Core Facility at the Institutes of Molecular Medicine and Experimental Immunology for support. Supported by the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 704 grants A1 (I.F.), A2 (C.K.), A5 (P.A.K.) and A8 (W.K.), and Klinische Forschergruppe 228 grants P1 (U.P.) and P5 (C.K.)), the Australian National Health and Medical Research Council (D.I.G. and J.R.) and the Australian Research Council (J.R.).

Author information




V.S. and V.L-K. designed and did most experiments, analyzed and interpreted data and contributed to the writing of the manuscript; C.A.T., T.Q. and K.H. designed, did and analyzed individual experiments; U.P., J.R., P.P., J.C., D.I.G., P.B.S., P.A.K., W.K. and I.F. contributed tools, discussed and interpreted results and edited the manuscript; and C.K. conceived the project, designed and interpreted experiments and wrote the manuscript.

Corresponding authors

Correspondence to Irmgard Förster or Christian Kurts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 (PDF 3572 kb)

Supplementary Movie 1

Short DC contact duration when CTL had not been exposed to α-GC. (MOV 962 kb)

Supplementary Movie 2

Long DC contact duration when CTL had been exposed to α-GC. (MOV 833 kb)

Supplementary Movie 3

Impaired migration of CCR4-competent CTL towards DCs that cannot produce CCL17 (MOV 1035 kb)

Supplementary Movie 4

Impaired migration of CCR4-deficient CTL towards CCL17-producing DCs. (MOV 1161 kb)

Supplementary Movie 5

Direct comparison of migration of CCR4-competent and –deficient CTL towards CCL17-producing DCs. (MOV 1219 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Semmling, V., Lukacs-Kornek, V., Thaiss, C. et al. Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell–licensed DCs. Nat Immunol 11, 313–320 (2010).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing