Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4

Abstract

MAVS is critical in innate antiviral immunity as the sole adaptor for RIG-I-like helicases. MAVS regulation is essential for the prevention of excessive harmful immune responses. Here we identify PCBP2 as a negative regulator in MAVS-mediated signaling. Overexpression of PCBP2 abrogated cellular responses to viral infection, whereas knockdown of PCBP2 exerted the opposite effect. PCBP2 was induced after viral infection, and its interaction with MAVS led to proteasomal degradation of MAVS. PCBP2 recruited the HECT domain–containing E3 ligase AIP4 to polyubiquitinate and degrade MAVS. MAVS was degraded after viral infection in wild-type mouse embryonic fibroblasts but remained stable in AIP4-deficient (Itch−/−) mouse embryonic fibroblasts, coupled with greatly exaggerated and prolonged antiviral responses. The PCBP2-AIP4 axis defines a new signaling cascade for MAVS degradation and 'fine tuning' of antiviral innate immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PCBP2 interacts with MAVS and negatively regulates MAVS-mediated signaling.
Figure 2: PCBP2 negatively regulates cellular antiviral responses.
Figure 3: Characterization of the interaction between PCBP2 and MAVS.
Figure 4: PCBP2 induces the degradation of MAVS.
Figure 5: PCBP2 WB2 sequence is critical for MAVS degradation.
Figure 6: AIP4 is the E3 ubiquitin ligase for MAVS.
Figure 7: AIP4 negatively regulates RLH-mediated signaling.

Similar content being viewed by others

References

  1. Kumagai, Y., Takeuchi, O. & Akira, S. Pathogen recognition by innate receptors. J. Infect. Chemother. 14, 86–92 (2008).

    Article  CAS  Google Scholar 

  2. Gitlin, L. et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. USA 103, 8459–8464 (2006).

    Article  CAS  Google Scholar 

  3. Kato, H. et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19–28 (2005).

    Article  CAS  Google Scholar 

  4. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

    Article  CAS  Google Scholar 

  5. Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6, 981–988 (2005).

    Article  CAS  Google Scholar 

  6. Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172 (2005).

    Article  CAS  Google Scholar 

  7. Seth, R.B., Sun, L., Ea, C.K. & Chen, Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122, 669–682 (2005).

    Article  CAS  Google Scholar 

  8. Xu, L.G. et al. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 19, 727–740 (2005).

    Article  CAS  Google Scholar 

  9. Bhoj, V.G. & Chen, Z.J. Ubiquitylation in innate and adaptive immunity. Nature 458, 430–437 (2009).

    Article  CAS  Google Scholar 

  10. Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  Google Scholar 

  11. Glickman, M.H. & Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428 (2002).

    Article  CAS  Google Scholar 

  12. Arimoto, K. et al. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc. Natl. Acad. Sci. USA 104, 7500–7505 (2007).

    Article  CAS  Google Scholar 

  13. Paz, S. et al. Ubiquitin-regulated recruitment of IκB kinase ε to the MAVS interferon signaling adapter. Mol. Cell. Biol. 29, 3401–3412 (2009).

    Article  CAS  Google Scholar 

  14. Makeyev, A.V. & Liebhaber, S.A. The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms. RNA 8, 265–278 (2002).

    Article  CAS  Google Scholar 

  15. Funke, B. et al. The mouse poly(C)-binding protein exists in multiple isoforms and interacts with several RNA-binding proteins. Nucleic Acids Res. 24, 3821–3828 (1996).

    Article  CAS  Google Scholar 

  16. Wang, Z., Day, N., Trifillis, P. & Kiledjian, M. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol. Cell. Biol. 19, 4552–4560 (1999).

    Article  CAS  Google Scholar 

  17. Bedard, K.M., Daijogo, S. & Semler, B.L. A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation. EMBO J. 26, 459–467 (2007).

    Article  CAS  Google Scholar 

  18. Blyn, L.B. et al. Poly(rC) binding protein 2 binds to stem-loop IV of the poliovirus RNA 5′ noncoding region: identification by automated liquid chromatography-tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 93, 11115–11120 (1996).

    Article  CAS  Google Scholar 

  19. Sean, P., Nguyen, J.H. & Semler, B.L. The linker domain of poly(rC) binding protein 2 is a major determinant in poliovirus cap-independent translation. Virology 378, 243–253 (2008).

    Article  CAS  Google Scholar 

  20. Chen, H.I. & Sudol, M. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc. Natl. Acad. Sci. USA 92, 7819–7823 (1995).

    Article  CAS  Google Scholar 

  21. Ingham, R.J., Gish, G. & Pawson, T. The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 23, 1972–1984 (2004).

    Article  CAS  Google Scholar 

  22. Lu, P.J., Zhou, X.Z., Shen, M. & Lu, K.P. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283, 1325–1328 (1999).

    Article  CAS  Google Scholar 

  23. Scheffner, M., Nuber, U. & Huibregtse, J.M. Protein ubiquitination involving an E1–E2-E3 enzyme ubiquitin thioester cascade. Nature 373, 81–83 (1995).

    Article  CAS  Google Scholar 

  24. Dejgaard, K. & Leffers, H. Characterisation of the nucleic-acid-binding activity of KH domains. Different properties of different domains. Eur. J. Biochem. 241, 425–431 (1996).

    Article  CAS  Google Scholar 

  25. Hustad, C.M. et al. Molecular genetic characterization of six recessive viable alleles of the mouse agouti locus. Genetics 140, 255–265 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Oberst, A. et al. The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch. Proc. Natl. Acad. Sci. USA 104, 11280–11285 (2007).

    Article  CAS  Google Scholar 

  27. Fang, D. et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat. Immunol. 3, 281–287 (2002).

    Article  CAS  Google Scholar 

  28. Gao, M. et al. Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science 306, 271–275 (2004).

    Article  CAS  Google Scholar 

  29. Mueller, D.L. E3 ubiquitin ligases as T cell anergy factors. Nat. Immunol. 5, 883–890 (2004).

    Article  CAS  Google Scholar 

  30. Heissmeyer, V. et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat. Immunol. 5, 255–265 (2004).

    Article  CAS  Google Scholar 

  31. McGill, M.A. & McGlade, C.J. Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J. Biol. Chem. 278, 23196–23203 (2003).

    Article  CAS  Google Scholar 

  32. Matesic, L.E., Haines, D.C., Copeland, N.G. & Jenkins, N.A. Itch genetically interacts with Notch1 in a mouse autoimmune disease model. Hum. Mol. Genet. 15, 3485–3497 (2006).

    Article  CAS  Google Scholar 

  33. Chang, L. et al. The E3 ubiquitin ligase itch couples JNK activation to TNFα-induced cell death by inducing c-FLIP(L) turnover. Cell 124, 601–613 (2006).

    Article  CAS  Google Scholar 

  34. Shembade, N. et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat. Immunol. 9, 254–262 (2008).

    Article  CAS  Google Scholar 

  35. Melino, G. et al. Itch: a HECT-type E3 ligase regulating immunity, skin and cancer. Cell Death Differ. 15, 1103–1112 (2008).

    Article  CAS  Google Scholar 

  36. Shearwin-Whyatt, L., Dalton, H.E., Foot, N. & Kumar, S. Regulation of functional diversity within the Nedd4 family by accessory and adaptor proteins. Bioessays 28, 617–628 (2006).

    Article  CAS  Google Scholar 

  37. Sun, W. et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl. Acad. Sci. USA 106, 8653–8658 (2009).

    Article  CAS  Google Scholar 

  38. Jiang, Z. et al. CD14 is required for MyD88-independent LPS signaling. Nat. Immunol. 6, 565–570 (2005).

    Article  CAS  Google Scholar 

  39. Wegierski, T., Hill, K., Schaefer, M. & Walz, G. The HECT ubiquitin ligase AIP4 regulates the cell surface expression of select TRP channels. EMBO J. 25, 5659–5669 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Chen and D. Gao (Peking University) for technical assistance and the 293 cDNA library for yeast two-hybrid screening; Z. Chen (University of Texas Southwestern Medical Center) for MAVS chimera expression vectors; E. Harhaj (University of Miami) for Itch−/− MEFs; Q. Chen (Nankai University) for antibody to Bcl-xL (anti-Bcl-xL); H. Shu (Wuhan University) for HA-UB(K48) and HA-UB(K63) (plasmids encoding ubiquitin-K48 and ubiquitin-K63); C. Zheng (Wuhan University) for SeV; and C. Wang (Shanghai Institutes for Biological Sciences) for green fluorescent protein (GFP)-tagged NDV. Supported by the National Natural Science Foundation of China (30772024, 30721064), the National Basic Research Program of China (2007CB914502) and the Key Project of the Chinese Ministry of Education (108002).

Author information

Authors and Affiliations

Authors

Contributions

Z.J. designed research; F.Y., H.S., X.Z., W.S. and S.L. did research; Z.Z. contributed new reagents and analytical tools; F.Y., H.S., X.Z., W.S. and Z.J. analyzed data; and F.Y., X.Z. and Z.J. wrote the paper.

Corresponding author

Correspondence to Zhengfan Jiang.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1–2 (PDF 756 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, F., Sun, H., Zhou, X. et al. PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat Immunol 10, 1300–1308 (2009). https://doi.org/10.1038/ni.1815

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1815

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing