Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Influence of microbial environment on autoimmunity

Abstract

During protective immune responses, the adaptive arm of the immune system requires activation by signals provided by innate immunity and driven by microbial stimuli. Whether the same rules apply to autoimmune diseases involving clonal self-reactive T and B lymphocytes—a process referred to here as 'adaptive autoimmunity'—is not quite clear. Nevertheless, in these diseases, the innate–adaptive connection is likely to be influenced by the microbial environment. This review integrates the results of experiments analyzing autoimmunity in sterile versus nonsterile conditions and experiments testing the role of innate immune receptor signaling in autoimmunity. It proposes that autoimmune diseases can be divided into two groups, the pathogenesis of which either follows the rules of innate–adaptive connection or does not.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microbial involvement in autoimmunity.
Figure 2: Autoimmune diseases can be divided into two main groups.
Figure 3: Types of diseases associated with the activation of the immune system.

Similar content being viewed by others

References

  1. Lo, S.S., Tun, R.Y., Hawa, M. & Leslie, R.D. Studies of diabetic twins. Diabetes Metab. Rev. 7, 223–238 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Block, S.R., Winfield, J.B., Lockshin, M.D., D'Angelo, W.A. & Christian, C.L. Studies of twins with systemic lupus erythematosus. A review of the literature and presentation of 12 additional sets. Am. J. Med. 59, 533–552 (1975).

    Article  CAS  PubMed  Google Scholar 

  3. Bach, J.F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002). Fundamental work analyzing interactions of microbial environment and autoimmunity.

    Article  PubMed  Google Scholar 

  4. Muntoni, S. New insights into the epidemiology of type 1 diabetes in Mediterranean countries. Diabetes Metab. Res. Rev. 15, 133–140 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Zipris, D. et al. TLR activation synergizes with Kilham rat virus infection to induce diabetes in BBDR rats. J. Immunol. 174, 131–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Zipris, D. et al. TLR9-signaling pathways are involved in Kilham rat virus-induced autoimmune diabetes in the biobreeding diabetes-resistant rat. J. Immunol. 178, 693–701 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Goverman, J. Tolerance and autoimmunity in TCR transgenic mice specific for myelin basic protein. Immunol. Rev. 169, 147–159 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pozzilli, P., Signore, A., Williams, A.J. & Beales, P.E. NOD mouse colonies around the world–recent facts and figures. Immunol. Today 14, 193–196 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Anderson, M.S. & Bluestone, J.A. The NOD mouse: a model of immune dysregulation. Annu. Rev. Immunol. 23, 447–485 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Malkiel, S., Liao, L., Cunningham, M.W. & Diamond, B. T-cell-dependent antibody response to the dominant epitope of streptococcal polysaccharide, N-acetyl-glucosamine, is cross-reactive with cardiac myosin. Infect. Immun. 68, 5803–5808 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oldstone, M.B. Molecular mimicry and immune-mediated diseases. FASEB J. 12, 1255–1265 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Benoist, C. & Mathis, D. Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat. Immunol. 2, 797–801 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Munz, C., Lunemann, J.D., Getts, M.T. & Miller, S.D. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat. Rev. Immunol. 9, 246–258 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Miller, S.D. et al. Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading. Nat. Med. 3, 1133–1136 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Janeway, C.A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989). Of exceptional importance. Set the modern paradigm of innate-adaptive immunity connection.

    Article  CAS  PubMed  Google Scholar 

  16. Medzhitov, R. Approaching the asymptote: 20 years later. Immunity 30, 766–775 (2009). Important summary of the achievements in the field that was started by C.A. Janeway Jr. (ref. 15).

    Article  CAS  PubMed  Google Scholar 

  17. Palm, N.W. & Medzhitov, R. Pattern recognition receptors and control of adaptive immunity. Immunol. Rev. 227, 221–233 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Kawai, T. & Akira, S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21, 317–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davidson, A. & Diamond, B. Autoimmune diseases. N. Engl. J. Med. 345, 340–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. McGonagle, D. & McDermott, M.F. A proposed classification of the immunological diseases. PLoS Med. 3, e297 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Suzuki, T. et al. Diabetogenic effects of lymphoctye transfusion on the NOD or NOD nude mouse. in Immune Deficient Animals in Biomedical Research (eds. Rygaard, J., Graem, N. & Sprang-Thomsen, M.) 112–116 (Karger, Basel, Switzerland, 1987).

  22. Wen, L. et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455, 1109–1113 (2008). This work clearly showed the role of commensal bacteria in contol of autoimmunity

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rossini, A.A., Williams, R.M., Mordes, J.P., Appel, M.C. & Like, A.A. Spontaneous diabetes in the gnotobiotic BB/W rat. Diabetes 28, 1031–1032 (1979).

    Article  CAS  PubMed  Google Scholar 

  24. Anderson, A.C. et al. High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: mechanisms of selection of the self-reactive repertoire. J. Exp. Med. 191, 761–770 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bjork, J., Kleinau, S., Midtvedt, T., Klareskog, L. & Smedegard, G. Role of the bowel flora for development of immunity to hsp 65 and arthritis in three experimental models. Scand. J. Immunol. 40, 648–652 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Rehakova, Z. et al. Germ-free mice do not develop ankylosing enthesopathy, a spontaneous joint disease. Hum. Immunol. 61, 555–558 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Sinkorova, Z., Capkova, J., Niederlova, J., Stepankova, R. & Sinkora, J. Commensal intestinal bacterial strains trigger ankylosing enthesopathy of the ankle in inbred B10.BR (H-2(k)) male mice. Hum. Immunol. 69, 845–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Maldonado, M.A. et al. The role of environmental antigens in the spontaneous development of autoimmunity in MRL-lpr mice. J. Immunol. 162, 6322–6330 (1999).

    CAS  PubMed  Google Scholar 

  29. Stranges, P.B. et al. Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity 26, 629–641 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gray, D.H., Gavanescu, I., Benoist, C. & Mathis, D. Danger-free autoimmune disease in Aire-deficient mice. Proc. Natl. Acad. Sci. USA 104, 18193–18198 (2007). The work revealed that APECED is independent of innate-adaptive connection, a prototypic Group II disease in our proposed classification.

    Google Scholar 

  31. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Mathis, D. & Benoist, C. Aire. Annu. Rev. Immunol. 27, 287–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Hase, K. et al. Activation-induced cytidine deaminase deficiency causes organ-specific autoimmune disease. PLoS ONE 3, e3033 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kim, J.M., Rasmussen, J.P. & Rudensky, A.Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Abdollahi-Roodsaz, S. et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Invest. 118, 205–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Croker, B.A. et al. Inflammation and autoimmunity caused by a SHP1 mutation depend on IL-1, MyD88, and a microbial trigger. Proc. Natl. Acad. Sci. USA 105, 15028–15033 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu, C.C. et al. B and T cells are not required for the viable motheaten phenotype. J. Exp. Med. 183, 371–380 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Haas, T. et al. The DNA sugar backbone 2′ deoxyribose determines toll-like receptor 9 activation. Immunity 28, 315–323 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Gewirtz, A.T., Navas, T.A., Lyons, S., Godowski, P.J. & Madara, J.L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Lee, J. et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat. Cell Biol. 8, 1327–1336 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Napirei, M. et al. Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat. Genet. 25, 177–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Yasutomo, K. et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat. Genet. 28, 313–314 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yoshida, H., Okabe, Y., Kawane, K., Fukuyama, H. & Nagata, S. Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA. Nat. Immunol. 6, 49–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Crow, Y.J. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 38, 910–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Gaipl, U.S. et al. Clearance deficiency and systemic lupus erythematosus (SLE). J. Autoimmun. 28, 114–121 (2007).

    Article  PubMed  Google Scholar 

  47. Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Deane, J.A. et al. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27, 801–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fairhurst, A.M. et al. Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur. J. Immunol. 38, 1971–1978 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sigurdsson, S. et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am. J. Hum. Genet. 76, 528–537 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miceli-Richard, C. et al. Association of an IRF5 gene functional polymorphism with Sjogren's syndrome. Arthritis Rheum. 56, 3989–3994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. O'Neill, L.A. & Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7, 353–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Sigurdsson, S. et al. Comprehensive evaluation of the genetic variants of interferon regulatory factor 5 (IRF5) reveals a novel 5 bp length polymorphism as strong risk factor for systemic lupus erythematosus. Hum. Mol. Genet. 17, 872–881 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Richez, C. et al. TLR4 ligands induce IFN-alpha production by mouse conventional dendritic cells and human monocytes after IFN-beta priming. J. Immunol. 182, 820–828 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Lien, E. & Zipris, D. The role of Toll-like receptor pathways in the mechanism of type 1 diabetes. Curr. Mol. Med. 9, 52–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Lang, K.S. et al. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat. Med. 11, 138–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Garza, K.M. et al. Enhanced T cell responses contribute to the genetic predisposition of CD8-mediated spontaneous autoimmunity. Eur. J. Immunol. 32, 885–894 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Horwitz, M.S. et al. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat. Med. 4, 781–785 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Ellerman, K.E. & Like, A.A. Susceptibility to diabetes is widely distributed in normal class IIu haplotype rats. Diabetologia 43, 890–898 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. LeibundGut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8, 630–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Acosta-Rodriguez, E.V. et al. Surface phenotype and antigenic specificity of human interleukin 17–producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Manicassamy, S. et al. Toll-like receptor 2–dependent induction of vitamin A–metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity. Nat. Med. 15, 401–409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Smyth, D.J. et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat. Genet. 38, 617–619 (2006). This and ref. 64 suggest, but do not prove, that viral infections in humans can accelerate T1D development either due to excessive MDA5 activation or due to poor virus clearance.

    Article  CAS  PubMed  Google Scholar 

  64. Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J.A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Maeda, S. et al. Nod2 mutation in Crohn's disease potentiates NF-kappaB activity and IL-1beta processing. Science 307, 734–738 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Kobayashi, K.S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Strober, W., Kitani, A., Fuss, I., Asano, N. & Watanabe, T. The molecular basis of NOD2 susceptibility mutations in Crohn's disease. Mucosal Immunol. 1 (suppl. 1), S5–S9 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. & van der Goot, F.G. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126, 1135–1145 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Masters, S.L., Simon, A., Aksentijevich, I. & Kastner, D.L. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol. 27, 621–668 (2009). Comprehensive review of autoinflammatory diseases with clear distinction from autoimmunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Ben-Sasson, S.Z. et al. IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc. Natl. Acad. Sci. USA 106, 7119–7124 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ichinohe, T., Lee, H.K., Ogura, Y., Flavell, R. & Iwasaki, A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 206, 79–87 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Stockinger, B., Veldhoen, M. & Hirota, K. Modulation of Th17 development and function by activation of the aryl hydrocarbon receptor–the role of endogenous ligands. Eur. J. Immunol. 39, 652–654 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Jin, M.S. et al. Crystal structure of the TLR1–TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071–1082 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Kim, H.M. et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130, 906–917 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Bianchi, M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Kono, H. & Rock, K.L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8, 279–289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gao, B. & Tsan, M.F. Recombinant human heat shock protein 60 does not induce the release of tumor necrosis factor alpha from murine macrophages. J. Biol. Chem. 278, 22523–22529 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Gao, B. & Tsan, M.F. Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J. Biol. Chem. 278, 174–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Kovalchin, J.T. et al. In vivo delivery of heat shock protein 70 accelerates wound healing by up-regulating macrophage-mediated phagocytosis. Wound Repair Regen. 14, 129–137 (2006).

    Article  PubMed  Google Scholar 

  85. Schauber, J. et al. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J. Clin. Invest. 117, 803–811 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gilliet, M. & Lande, R. Antimicrobial peptides and self-DNA in autoimmune skin inflammation. Curr. Opin. Immunol. 20, 401–407 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Green, D.R., Ferguson, T., Zitvogel, L. & Kroemer, G. Immunogenic and tolerogenic cell death. Nat. Rev. Immunol. 9, 353–363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bianchi, M.E. & Manfredi, A.A. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol. Rev. 220, 35–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Grover, A. et al. Mycobacterial infection induces the secretion of high-mobility group box 1 protein. Cell. Microbiol. 10, 1390–1404 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Degryse, B. et al. The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J. Cell Biol. 152, 1197–1206 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Straino, S. et al. High-mobility group box 1 protein in human and murine skin: involvement in wound healing. J. Invest. Dermatol. 128, 1545–1553 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Ranzato, E., Patrone, M., Pedrazzi, M. & Burlando, B. HMGb1 promotes scratch wound closure of HaCaT keratinocytes via ERK1/2 activation. Mol. Cell Biochem. published online, doi:10.1007/s11010-009-0192-4 (9 July 2009).

  95. Chen, G.Y., Tang, J., Zheng, P. & Liu, Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323, 1722–1725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Tian, J. et al. Toll-like receptor 9–dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8, 487–496 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Leadbetter, E.A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Schaschl, H., Aitman, T.J. & Vyse, T.J. Copy number variation in the human genome and its implication in autoimmunity. Clin. Exp. Immunol. 156, 12–16 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Torchinsky, M.B., Garaude, J., Martin, A.P. & Blander, J.M. Innate immune recognition of infected apoptotic cells directs TH17 cell differentiation. Nature 458, 78–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Kim, H.S. et al. Toll-like receptor 2 senses beta-cell death and contributes to the initiation of autoimmune diabetes. Immunity 27, 321–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Kelly, D., Conway, S. & Aminov, R. Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol. 26, 326–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Macpherson, A.J. & Slack, E. The functional interactions of commensal bacteria with intestinal secretory IgA. Curr. Opin. Gastroenterol. 23, 673–678 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Hooper, L.V. Do symbiotic bacteria subvert host immunity? Nat. Rev. Microbiol. 7, 367–374 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Hooper, L.V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291, 881–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Hooper, L.V. & Gordon, J.I. Commensal host-bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Bauer, H., Horowitz, R.E., Levenson, S.M. & Popper, H. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am. J. Pathol. 42, 471–483 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Yamanaka, T. et al. Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer's patches. J. Immunol. 170, 816–822 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Stappenbeck, T.S., Hooper, L.V. & Gordon, J.I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl. Acad. Sci. USA 99, 15451–15455 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gill, S.R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Turnbaugh, P.J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Huber, J.A. et al. Microbial population structures in the deep marine biosphere. Science 318, 97–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Ley, R.E., Turnbaugh, P.J., Klein, S. & Gordon, J.I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Sanos, S.L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22–producing NKp46+ cells. Nat. Immunol. 10, 83–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Takatori, H. et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 206, 35–41 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ivanov, I.I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008). Shows specificity in the immunity-controlling functions of different types of microbiota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Calcinaro, F. et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia 48, 1565–1575 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Slack, E. et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325, 617–620 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wong, F.S. et al. The role of Toll-like receptors 3 and 9 in the development of autoimmune diabetes in NOD mice. Ann. NY Acad. Sci. 1150, 146–148 (2008).

    Article  PubMed  Google Scholar 

  122. Richer, M.J. & Horwitz, M.S. Viral infections in the pathogenesis of autoimmune diseases: focus on type 1 diabetes. Front. Biosci. 13, 4241–4257 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Zipris, D. Epidemiology of type 1 diabetes and what animal models teach us about the role of viruses in disease mechanisms. Clin. Immunol. 131, 11–23 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Barton, E.S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Hensley, S.E. et al. Murine norovirus infection has no significant effect on adaptive immunity to vaccinia virus or influenza A virus. J. Virol. 83, 7357–7360 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Robertson, S.J. et al. Suppression of acute anti-friend virus CD8+ T-cell responses by coinfection with lactate dehydrogenase-elevating virus. J. Virol. 82, 408–418 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Manolio, T.A., Brooks, L.D. & Collins, F.S.A. HapMap harvest of insights into the genetics of common disease. J. Clin. Invest. 118, 1590–1605 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Bottini, N. et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet. 36, 337–338 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Lowe, C.E. et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat. Genet. 39, 1074–1082 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Grant, S.F. et al. Follow-up analysis of genome-wide association data identifies novel loci for type 1 diabetes. Diabetes 58, 290–295 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Loeser, S. & Penninger, J.M. Regulation of peripheral T cell tolerance by the E3 ubiquitin ligase Cbl-b. Semin. Immunol. 19, 206–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Gregersen, P.K. & Olsson, L.M. Recent advances in the genetics of autoimmune disease. Annu. Rev. Immunol. 27, 363–391 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Smyth, D.J. et al. PTPN22 Trp620 explains the association of chromosome 1p13 with type 1 diabetes and shows a statistical interaction with HLA class II genotypes. Diabetes 57, 1730–1737 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Ridgway, W.M. et al. Gene-gene interactions in the NOD mouse model of type 1 diabetes. Adv. Immunol. 100, 151–175 (2008).

    Article  PubMed  CAS  Google Scholar 

  136. Duty, J.A. et al. Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors. J. Exp. Med. 206, 139–151 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Blander, J.M. & Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440, 808–812 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Blander, J.M. & Medzhitov, R. On regulation of phagosome maturation and antigen presentation. Nat. Immunol. 7, 1029–1035 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Chen, M. et al. Dendritic cell apoptosis in the maintenance of immune tolerance. Science 311, 1160–1164 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank R. Medzhitov for discussions and J. Pickard for suggestions on the manuscript. Supported by the Juvenile Diabetes Research Foundation (2005-204 and 2007-353), US National Institutes of Health (NIH; DK063452) and an NIH National Institute of Diabetes and Digestive and Kidney Diseases Digestive Disease Research Core Center grant (DK42086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V Chervonsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chervonsky, A. Influence of microbial environment on autoimmunity. Nat Immunol 11, 28–35 (2010). https://doi.org/10.1038/ni.1801

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1801

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing