Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A coming-of-age story: activation-induced cytidine deaminase turns 10

Abstract

The discovery and characterization of activation-induced cytidine deaminase (AID) 10 years ago provided the basis for a mechanistic understanding of secondary antibody diversification and the subsequent generation and maintenance of cellular memory in B lymphocytes, which signified a major advance in the field of B cell immunology. Here we celebrate and review the triumphs in the mission to understand the mechanisms through which AID influences antibody diversification, as well as the implications of AID function on human physiology. We also take time to point out important ongoing controversies and outstanding questions in the field and highlight key experiments and techniques that hold the potential to elucidate the remaining mysteries surrounding this vital protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antibody diversification.
Figure 2: Specific localization to the nuclear periphery may be important for DSB repair.

Similar content being viewed by others

References

  1. Burnet, F.M. A modification of Jerne's theory of antibody production using the concept of clonal selection. CA Cancer J. Clin. 26, 119–121 (1976).

    CAS  PubMed  Google Scholar 

  2. Lederberg, J. Genes and antibodies. Science 129, 1649–1653 (1959).

    CAS  PubMed  Google Scholar 

  3. Weigert, M.G., Cesari, I.M., Yonkovich, S.J. & Cohn, M. Variability in the λ light chain sequences of mouse antibody. Nature 228, 1045–1047 (1970).

    CAS  PubMed  Google Scholar 

  4. Crews, S., Griffin, J., Huang, H., Calame, K. & Hood, L. A single VH gene segment encodes the immune response to phosphorylcholine: somatic mutation is correlated with the class of the antibody. Cell 25, 59–66 (1981).

    CAS  PubMed  Google Scholar 

  5. Selsing, E. & Storb, U. Somatic mutation of immunoglobulin light-chain variable-region genes. Cell 25, 47–58 (1981).

    CAS  PubMed  Google Scholar 

  6. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    CAS  PubMed  Google Scholar 

  7. Neuberger, M.S. Antibody diversification by somatic mutation: from Burnet onwards. Immunol. Cell Biol. 86, 124–132 (2008).

    CAS  PubMed  Google Scholar 

  8. Schatz, D.G., Oettinger, M.A. & Baltimore, D. The V(D)J recombination activating gene, RAG-1. Cell 59, 1035–1048 (1989).

    CAS  PubMed  Google Scholar 

  9. Oettinger, M.A., Schatz, D.G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    CAS  PubMed  Google Scholar 

  10. Gellert, M.V. (D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 71, 101–132 (2002).

    CAS  PubMed  Google Scholar 

  11. Stavnezer, J., Guikema, J.E. & Schrader, C.E. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26, 261–292 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Storb, U. et al. Targeting of AID to immunoglobulin genes. Adv. Exp. Med. Biol. 596, 83–91 (2007).

    PubMed  Google Scholar 

  13. Teng, G. & Papavasiliou, F.N. Immunoglobulin somatic hypermutation. Annu. Rev. Genet. 41, 107–120 (2007).

    CAS  PubMed  Google Scholar 

  14. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999). Here, Honjo and colleagues report the cloning and initial characterization of AID.

    CAS  PubMed  Google Scholar 

  15. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000). This report describes the astonishing finding that AID-deficient animals lack both CSR and SHM; thus, AID is central to both secondary antibody-diversification reactions.

    CAS  PubMed  Google Scholar 

  16. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000). Here, Durandy and colleagues demonstrate that a cohort of patients with hyper-IgM syndrome (who are deficient in CSR and SHM) have mutations in AID . Together with reference 13, this confirms the importance of AID in antibody diversification and disease.

    CAS  PubMed  Google Scholar 

  17. Peters, A. & Storb, U. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 4, 57–65 (1996).

    CAS  PubMed  Google Scholar 

  18. Wiesendanger, M., Scharff, M.D. & Edelmann, W. Somatic hypermutation, transcription, and DNA mismatch repair. Cell 94, 415–418 (1998).

    CAS  PubMed  Google Scholar 

  19. Neuberger, M.S. et al. Monitoring and interpreting the intrinsic features of somatic hypermutation. Immunol. Rev. 162, 107–116 (1998).

    CAS  PubMed  Google Scholar 

  20. Martin, A. & Scharff, M.D. Somatic hypermutation of the AID transgene in B and non-B cells. Proc. Natl. Acad. Sci. USA 99, 12304–12308 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoshikawa, K. et al. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 296, 2033–2036 (2002).

    CAS  PubMed  Google Scholar 

  22. Mayorov, V.I. et al. Expression of human AID in yeast induces mutations in context similar to the context of somatic hypermutation at G-C pairs in immunoglobulin genes. BMC Immunol. 6, 10 (2005).

    PubMed  PubMed Central  Google Scholar 

  23. Poltoratsky, V.P., Wilson, S.H., Kunkel, T.A. & Pavlov, Y.I. Recombinogenic phenotype of human activation-induced cytosine deaminase. J. Immunol. 172, 4308–4313 (2004).

    CAS  PubMed  Google Scholar 

  24. Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002). In this paper, Neuberger and colleagues demonstrate that ectopic overexpression of AID in bacteria increases the rate of mutation, which suggests that AID targets DNA.

    CAS  PubMed  Google Scholar 

  25. Harris, R.S., Petersen-Mahrt, S.K. & Neuberger, M.S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002).

    CAS  PubMed  Google Scholar 

  26. Bransteitter, R., Pham, P., Scharff, M.D. & Goodman, M.F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA 100, 4102–4107 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    CAS  PubMed  Google Scholar 

  28. Dickerson, S.K., Market, E., Besmer, E. & Papavasiliou, F.N. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197, 1291–1296 (2003). Together, references 26–28 show that AID is an active DNA deaminase that uses single-stranded DNA as its substrate.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Besmer, E., Market, E. & Papavasiliou, F.N. The transcription elongation complex directs activation-induced cytidine deaminase-mediated DNA deamination. Mol. Cell. Biol. 26, 4378–4385 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shen, H.M. et al. The activation-induced cytidine deaminase (AID) efficiently targets DNA in nucleosomes but only during transcription. J. Exp. Med. 206, 1057–1071 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nonaka, T. et al. Carboxy-terminal domain of AID required for its mRNA complex formation in vivo. Proc. Natl. Acad. Sci. USA 106, 2747–2751 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pham, P., Bransteitter, R., Petruska, J. & Goodman, M.F. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424, 103–107 (2003).

    CAS  PubMed  Google Scholar 

  33. Yu, K., Huang, F.T. & Lieber, M.R. DNA substrate length and surrounding sequence affect the activation-induced deaminase activity at cytidine. J. Biol. Chem. 279, 6496–6500 (2004).

    CAS  PubMed  Google Scholar 

  34. Rogozin, I.B. & Diaz, M. Cutting edge: DGYW/WRCH is a better predictor of mutability at G:C bases in Ig hypermutation than the widely accepted RGYW/WRCY motif and probably reflects a two-step activation-induced cytidine deaminase-triggered process. J. Immunol. 172, 3382–3384 (2004).

    CAS  PubMed  Google Scholar 

  35. Nambu, Y. et al. Transcription-coupled events associating with immunoglobulin switch region chromatin. Science 302, 2137–2140 (2003).

    CAS  PubMed  Google Scholar 

  36. Vuong, B. et al. Specific recruitment of protein kinase A to the immunoglobulin locus regulates class-switch recombination. Nat. Immunol. 10, 420–426 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rada, C. et al. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 12, 1748–1755 (2002).

    CAS  PubMed  Google Scholar 

  38. Imai, K. et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat. Immunol. 4, 1023–1028 (2003).

    CAS  PubMed  Google Scholar 

  39. Durandy, A., Revy, P. & Fischer, A. Human models of inherited immunoglobulin class switch recombination and somatic hypermutation defects (hyper-IgM syndromes). Adv. Immunol. 82, 295–330 (2004).

    CAS  PubMed  Google Scholar 

  40. Begum, N.A. et al. Further evidence for involvement of a noncanonical function of uracil DNA glycosylase in class switch recombination. Proc. Natl. Acad. Sci. USA 106, 2752–2757 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shivarov, V., Shinkura, R. & Honjo, T. Dissociation of in vitro DNA deamination activity and physiological functions of AID mutants. Proc. Natl. Acad. Sci. USA 105, 15866–15871 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Faili, A. et al. AID-dependent somatic hypermutation occurs as a DNA single-strand event in the BL2 cell line. Nat. Immunol. 3, 815–821 (2002).

    CAS  PubMed  Google Scholar 

  43. Yadav, A. et al. Identification of a ubiquitously active promoter of the murine activation-induced cytidine deaminase (AICDA) gene. Mol. Immunol. 43, 529–541 (2006).

    CAS  PubMed  Google Scholar 

  44. Crouch, E.E. et al. Regulation of AID expression in the immune response. J. Exp. Med. 204, 1145–1156 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gonda, H. et al. The balance between Pax5 and Id2 activities is the key to AID gene expression. J. Exp. Med. 198, 1427–1437 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dedeoglu, F., Horwitz, B., Chaudhuri, J., Alt, F.W. & Geha, R.S. Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFκB. Int. Immunol. 16, 395–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Park, S. et al. HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce AID expression, class-switch DNA recombination and somatic hypermutation. Nat. Immunol. 10, 540–550 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sayegh, C.E., Quong, M.W., Agata, Y. & Murre, C. E-proteins directly regulate expression of activation-induced deaminase in mature B cells. Nat. Immunol. 4, 586–593 (2003).

    CAS  PubMed  Google Scholar 

  49. Pauklin, S., Sernandez, I., Bachmann, G., Ramiro, A. & Petersen-Mahrt, S. Estrogen directly activates AID transcription and function. J. Exp. Med. 206, 99–111 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gourzi, P., Leonova, T. & Papavasiliou, F.N. A role for activation-induced cytidine deaminase in the host response against a transforming retrovirus. Immunity 24, 779–786 (2006).

    CAS  PubMed  Google Scholar 

  51. Teng, G. et al. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 28, 621–629 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dorsett, Y. et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28, 630–638 (2008). Together, references 51 and 52 show that a specific mutation of a miR-155 target site present in the 3′ untranslated region of AID leads to deregulation of AID protein in transgenic or gene-targeted mice; therefore, miR155 directly regulates the amount of AID protein in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. De Yebenes, V. et al. miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J. Exp. Med. 205, 2199–2206 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hunter, T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol. Cell 28, 730–738 (2007).

    CAS  PubMed  Google Scholar 

  55. Basu, U., Chaudhuri, J., Phan, R.T., Datta, A. & Alt, F.W. Regulation of activation induced deaminase via phosphorylation. Adv. Exp. Med. Biol. 596, 129–137 (2007).

    PubMed  Google Scholar 

  56. Mcbride, K. et al. Regulation of class switch recombination and somatic mutation by AID phosphorylation. J. Exp. Med. 205, 2585–2594 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cheng, H. et al. Integrity of the AID serine-38 phosphorylation site is critical for class switch recombination and somatic hypermutation in mice. Proc. Natl. Acad. Sci. USA 106, 2717–2722 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mcbride, K. et al. Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation. Proc. Natl. Acad. Sci. USA 103, 8798–8803 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Aoufouchi, S. et al. Proteasomal degradation restricts the nuclear lifespan of AID. J. Exp. Med. 205, 1357–1368 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Delker, R. & Papavasiliou, F. Elucidating the mechanism of specificity achieved by activation-induced cytidine deaminase. Keystone Meeting, Taos, NM (2009).

    Google Scholar 

  61. Li, M. et al. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972–1975 (2003).

    CAS  PubMed  Google Scholar 

  62. Ito, S. et al. Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proc. Natl. Acad. Sci. USA 101, 1975–1980 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mcbride, K. Somatic hypermutation is limited by CRM1-dependent nuclear export of activation-induced deaminase. J. Exp. Med. 199, 1235–1244 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Brar, S., Watson, M. & Diaz, M. Activation-induced cytosine deaminase (AID) is actively exported out of the nucleus but retained by the induction of DNA breaks. J. Biol. Chem. 279, 26395–26401 (2004).

    CAS  PubMed  Google Scholar 

  65. Durandy, A., Revy, P., Imai, K. & Fischer, A. Hyper-immunoglobulin M syndromes caused by intrinsic B-lymphocyte defects. Immunol. Rev. 203, 67–79 (2005).

    CAS  PubMed  Google Scholar 

  66. Ta, V.T. et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat. Immunol. 4, 843–848 (2003).

    CAS  PubMed  Google Scholar 

  67. Patenaude, A. et al. Active nuclear import and cytoplasmic retention of activation-induced deaminase. Nat. Struct. Mol. Biol. 16, 517–527 (2009).

    CAS  PubMed  Google Scholar 

  68. Ramiro, A.R., Stavropoulos, P., Jankovic, M. & Nussenzweig, M.C. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat. Immunol. 4, 452–456 (2003).

    CAS  PubMed  Google Scholar 

  69. Shen, H.M. & Storb, U. Activation-induced cytidine deaminase (AID) can target both DNA strands when the DNA is supercoiled. Proc. Natl. Acad. Sci. USA 101, 12997–13002 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Okazaki, I.M. et al. Constitutive expression of AID leads to tumorigenesis. J. Exp. Med. 197, 1173–1181 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yoshikawa, K. AID Enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 296, 2033–2036 (2002).

    CAS  PubMed  Google Scholar 

  72. Liu, M. et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature 451, 841–845 (2008).

    CAS  PubMed  Google Scholar 

  73. Lebecque, S.G. & Gearhart, P.J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is approximately 1 kb from V(D)J gene. J. Exp. Med. 172, 1717–1727 (1990).

    CAS  PubMed  Google Scholar 

  74. Fukita, Y., Jacobs, H. & Rajewsky, K. Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity 9, 105–114 (1998).

    CAS  PubMed  Google Scholar 

  75. Tumas-Brundage, K. & Manser, T. The transcriptional promoter regulates hypermutation of the antibody heavy chain locus. J. Exp. Med. 185, 239–250 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Winter, D.B., Sattar, N., Mai, J.J. & Gearhart, P.J. Insertion of 2 kb of bacteriophage DNA between an immunoglobulin promoter and leader exon stops somatic hypermutation in a kappa transgene. Mol. Immunol. 34, 359–366 (1997).

    CAS  PubMed  Google Scholar 

  77. Rada, C. & Milstein, C. The intrinsic hypermutability of antibody heavy and light chain genes decays exponentially. EMBO J. 20, 4570–4576 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rajagopal, D. et al. Immunoglobulin switch mu sequence causes RNA polymerase II accumulation and reduces dA hypermutation. J. Exp. Med. 206, 1237–1244 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Shen, H.M., Peters, A., Kao, D. & Storb, U. The 3′ Igκ enhancer contains RNA polymerase II promoters: implications for endogenous and transgenic kappa gene expression. Int. Immunol. 13, 665–674 (2001).

    CAS  PubMed  Google Scholar 

  80. Yang, S., Fugmann, S. & Schatz, D. Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences. J. Exp. Med. 203, 2919–2928 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, S. & Schatz, D. Targeting of AID-mediated sequence diversification by cis-acting determinants. Adv. Immunol. 94, 109–125 (2007).

    CAS  PubMed  Google Scholar 

  82. Odegard, V.H. & Schatz, D.G. Targeting of somatic hypermutation. Nat. Rev. Immunol. 6, 573–583 (2006).

    CAS  PubMed  Google Scholar 

  83. Goyenechea, B. et al. Cells strongly expressing Igκ transgenes show clonal recruitment of hypermutation: a role for both MAR and the enhancers. EMBO J. 16, 3987–3994 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Betz, A.G. et al. Elements regulating somatic hypermutation of an immunoglobulin κ gene: critical role for the intron enhancer/matrix attachment region. Cell 77, 239–248 (1994).

    CAS  PubMed  Google Scholar 

  85. Perlot, T., Alt, F., Bassing, C.H., Suh, H. & Pinaud, E. Elucidation of IgH intronic enhancer functions via germ-line deletion. Proc. Natl. Acad. Sci. USA 102, 14362–14367 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Inlay, M.A. et al. Roles of the Ig κ light chain intronic and 3′ enhancers in Igk somatic hypermutation. J. Immunol. 177, 1146–1151 (2006).

    CAS  PubMed  Google Scholar 

  87. Wuerffel, R. et al. S-S synapsis during class switch recombination is promoted by distantly located transcriptional elements and activation-induced deaminase. Immunity 27, 711–722 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kothapalli, N., Norton, D.D. & Fugmann, S.D. Cutting edge: a cis-acting DNA element targets AID-mediated sequence diversification to the chicken Ig light chain gene locus. J. Immunol. 180, 2019–2023 (2008).

    CAS  PubMed  Google Scholar 

  89. Blagodatski, A. et al. A cis-acting diversification activator both necessary and sufficient for AID-mediated hypermutation. PLoS Genet. 5, e1000332 (2009). References 88 and 89 identify a mutational enhancer at the chicken Igl locus that is distinct from known enhancers and can confer mutability to heterologous genes; this is the first demonstration that an AID-catalyzed mutation is specifically 'recruited' to the immunoglobulin locus.

    PubMed  PubMed Central  Google Scholar 

  90. Michael, N. et al. The E box motif CAGGTG enhances somatic hypermutation without enhancing transcription. Immunity 19, 235–242 (2003).

    CAS  PubMed  Google Scholar 

  91. Schoetz, U., Cervelli, M., Wang, Y.D., Fiedler, P. & Buerstedde, J.M. E2A expression stimulates Ig hypermutation. J. Immunol. 177, 395–400 (2006).

    CAS  PubMed  Google Scholar 

  92. Basu, U. et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature 438, 508–511 (2005).

    CAS  PubMed  Google Scholar 

  93. Chaudhuri, J., Khuong, C. & Alt, F. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430, 992–998 (2004). References 93 and 94 offer the first demonstration of a specific post-translational modification of AID (Ser38 phosphorylation), as well as the identification of the first putative AID cofactor (RPA) whose interaction depends on this modification.

    CAS  PubMed  Google Scholar 

  94. Schramke, V. et al. RPA regulates telomerase action by providing Est1p access to chromosome ends. Nat. Genet. 36, 46–54 (2004).

    CAS  PubMed  Google Scholar 

  95. Conticello, S. et al. Interaction between antibody-diversification enzyme AID and spliceosome-associated factor CTNNBL1. Mol. Cell 31, 474–484 (2008).

    CAS  PubMed  Google Scholar 

  96. Hein, K. et al. Processing of switch transcripts is required for targeting of antibody class switch recombination. J. Exp. Med. 188, 2369–2374 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Gomez-Gonzalez, B. & Aguilera, A. Activation-induced cytidine deaminase action is strongly stimulated by mutations of the THO complex. Proc. Natl. Acad. Sci. USA 104, 8409–8414 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, X. & Manley, J.L. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365–378 (2005).

    CAS  PubMed  Google Scholar 

  99. Reddy, K.L., Zullo, J.M., Bertolino, E. & Singh, H. Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452, 243–247 (2008).

    CAS  PubMed  Google Scholar 

  100. Gartenberg, M.R. Life on the edge: telomeres and persistent DNA breaks converge at the nuclear periphery. Genes Dev. 23, 1027–1031 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Oza, P., Jaspersen, S.L., Miele, A., Dekker, J. & Peterson, C.L. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery. Genes Dev. 23, 912–927 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Schober, H., Ferreira, H., Kalck, V., Gehlen, L.R. & Gasser, S.M. Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev. 23, 928–938 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Nagai, S. et al. Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322, 597–602 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Geisberger, R., Rada, C. & Neuberger, M. The stability of AID and its function in class-switching are critically sensitive to the identity of its nuclear-export sequence. Proc. Natl. Acad. Sci. USA 106, 6736–6741 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Dunnick, W. et al. Switch Recombination and somatic hypermutation are controlled by the heavy chain 3′ enhancer region. J. Exp. Med. (in the press).

Download references

Acknowledgements

Supported by the Department of Defense (R.K.D.), the US National Institutes of Health (CA098495 for AID-related work in the F.N.P. laboratory) and the Intramural Program of the National Institute on Aging of the National Institutes of Health (S.D.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Nina Papavasiliou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delker, R., Fugmann, S. & Papavasiliou, F. A coming-of-age story: activation-induced cytidine deaminase turns 10. Nat Immunol 10, 1147–1153 (2009). https://doi.org/10.1038/ni.1799

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1799

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing