Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunological synapse formation inhibits, via NF-κB and FOXO1, the apoptosis of dendritic cells

A Corrigendum to this article was published on 01 June 2010

This article has been updated

Abstract

The immunological synapse (IS) is a cell–cell junction formed between CD4+ T cells and dendritic cells (DCs). Here we show in vitro and in vivo that IS formation inhibits apoptosis of DCs. Consistent with these results, IS formation induced antiapoptotic signaling events, including activation of the kinase Akt1 and localization of the prosurvival transcription factor NF-κB and the proapoptotic transcription factor FOXO1 to the nucleus and cytoplasm, respectively. Inhibition of phosphatidylinositol 3-OH kinase and Akt1 partially prevented the antiapoptotic effects of IS formation. Direct stimulation of the IS component CD40 on DCs leads to the activation of Akt1, suggesting the involvement of this receptor in the antiapoptotic effects observed upon IS formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DCs show a higher tendency to become apoptotic than CD4 T cells.
Figure 2: IS formation protects DCs from apoptosis in serum-free conditions.
Figure 3: IS formation protects DCs from apoptosis in lymph nodes.
Figure 4: IS(DC) is a signaling region where Akt1 is activated.
Figure 5: Akt1 facilitates apoptosis protection induced by IS(DC) formation.
Figure 6: IS(DC) formation induces translocation of NF-κB to the DC nucleus.
Figure 7: FOXO1 regulates DC survival.
Figure 8: IS(DC) formation induces nuclear translocation of FOXO1.
Figure 9: Stimulation of CD40 induces activation of Akt1.

Similar content being viewed by others

Change history

  • 11 February 2010

    In the version of this article initially published, a citation was omitted. It should be cited in the third paragraph of the Discussion section after the second sentence as follows: In this context, it has been suggested that Notch1, another receptor located at the IS(DC), may inhibit the apoptosis of DCs by inducing activation of Akt and STAT3, a transcription factor that promotes cell survival51. The bibliographic information is as follows: 51. Luty, W.H., Rodeberg, D., Parness, J. & Vyas, YM. Antiparallel segregation of notch components in the immunological synapse directs reciprocal signaling in allogeneic Th:DC conjugates. J. Immunol. 179, 819–829 (2007).

References

  1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  2. Kupfer, A. & Kupfer, H. Imaging immune cell interactions and functions: SMAC and the immunological synapse. Semin. Immunol. 15, 295–300 (2003).

    Article  CAS  Google Scholar 

  3. Rodriguez-Fernandez, J.L. & Corbi, A.L. Adhesion molecules in human dendritic cells. Curr. Opin. Investig. Drugs 6, 1103–1111 (2005).

    CAS  PubMed  Google Scholar 

  4. Stoll, S., Delon, J., Brotz, T.M. & Germain, R.M. Dynamic imaging of T-cell-dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).

    Article  Google Scholar 

  5. Delon, J., Stoll, S. & Germain, R.M. Imaging of T-cell interactions with antigen presenting cells in culture and in intact lymphoid tissue. Immunol. Rev. 189, 51–63 (2002).

    Article  CAS  Google Scholar 

  6. Huppa, J.B., Gleimer, M., Sumen, C. & Davis, M.M. Continuous T-cell receptor signaling required for synapse maintenance and full effector potential. Nat. Immunol. 4, 749–755 (2003).

    Article  CAS  Google Scholar 

  7. Mempel, T.R., Henrickson, S.E. & von Andrian, U.H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    Article  CAS  Google Scholar 

  8. Benvenuti, F. et al. Dendritic cell maturation controls adhesion, synapse formation, and duration of the duration of the interactions with naive T lymphocytes. J. Immunol. 172, 292–301 (2004).

    Article  CAS  Google Scholar 

  9. Boisvert, J., Edmondson, S. & Krummel, M.F. Immunological synapse formation licences CD40–CD40L accumulation at T-APC contact sites. J. Immunol. 173, 3647–3652 (2004).

    Article  CAS  Google Scholar 

  10. Van der Merwe, P.A., Davis, S.J., Shaw, A.S. & Dustin, M.L. Cytoskeletal polarization and redistribution of cell surface molecules during T cell antigen recognition. Semin. Immunol. 12, 5–21 (2000).

    Article  CAS  Google Scholar 

  11. Dustin, M.L., Bromley, S.K., Davis, M.M. & Zhu, C. Identification of self through two-dimensional chemistry and synapses. Annu. Rev. Cell Dev. Biol. 17, 133–157 (2001).

    Article  CAS  Google Scholar 

  12. Van der Merwe, P.A. Formation and function of the immunological synapse. Curr. Opin. Immunol. 1, 293–298 (2002).

    Article  Google Scholar 

  13. Davis, D.M. & Dustin, M.L. What is the importance of the immunological synapse? Trends Immunol. 25, 323–327 (2004).

    Article  CAS  Google Scholar 

  14. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  Google Scholar 

  15. Lee, K.-H. et al. The immunological synapse balances T cell receptor signaling and degradation. Science 302, 1218–1222 (2003).

    Article  CAS  Google Scholar 

  16. Davis, S.J. & Van der Merwe, P.A. The immunological synapse: required for T-cell receptor signaling or directing T-cell effector function? Curr. Biol. 11, R289–R291 (2001).

    Article  CAS  Google Scholar 

  17. Maldonado, R.A., Irvine, D.J., Schreiber, R. & Glimcher, L.H. A role for the immunological synapse in lineage commitment of CD4 lymphocytes. Nature 431, 527–532 (2004).

    Article  CAS  Google Scholar 

  18. Huppa, J.B. & Davis, M.M. T-cell-antigen recognition and the immunological synapse. Nat. Rev. Immunol. 3, 973–983 (2003).

    Article  CAS  Google Scholar 

  19. Al-Alwan, M.M., Rowden, G., Lee, T.D.G. & West, K.A. The dendritic cell cytoskeleton is critical for the formation of the immunological synapse. J. Immunol. 166, 1452–1456 (2001).

    Article  CAS  Google Scholar 

  20. Strasser, A., O`Connor, L. & Dixit, V.M. Apoptosis signaling. Annu. Rev. Biochem. 69, 217–245 (2000).

    Article  CAS  Google Scholar 

  21. Hildeman, D., Jorgensen, T., Kappler, J. & Marrack, P. Apoptosis and the homeostatic control of immune responses. Curr. Opin. Immunol. 19, 516–521 (2007).

    Article  CAS  Google Scholar 

  22. Downward, J. PI 3-kinase, Akt and cell survival. Semin. Cell Dev. Biol. 15, 177–182 (2004).

    Article  CAS  Google Scholar 

  23. Hou, W.S. & Van Parijs, L.A. Bcl-2-dependent molecular timer regulates the lifespan and immunogenicity of dendritic cells. Nat. Immunol. 5, 583–589 (2004).

    Article  CAS  Google Scholar 

  24. Karin, M. & Lin, A. NF-κB at the crossroads of life and death. Nat. Immunol. 3, 221–227 (2002).

    Article  CAS  Google Scholar 

  25. Burgering, B.M.T. & Kops, G.J.P.L. Cell cycle and death control: long lived forkheads. Trends Biochem. Sci. 27, 352–360 (2002).

    Article  CAS  Google Scholar 

  26. Birkenkamp, K.U. & Coffer, P.J. FOXO transcription factors as regulators of immune homeostasis: molecules to die for? J. Immunol. 171, 1623–1629 (2003).

    Article  CAS  Google Scholar 

  27. Ruedl, C., Koebel, P., Bachmann, M., Hess, M. & Karjalainen, K. Anatomical origin of dendritic cells determine their life span in peripheral lymph nodes. J. Immunol. 165, 4910–4916 (2000).

    Article  CAS  Google Scholar 

  28. Garg, S. et al. Genetic tagging shows increased frequency and longevity of antigen-presenting, skin derived dendritic cells in vivo. Nat. Immunol. 4, 907–912 (2003).

    Article  CAS  Google Scholar 

  29. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigen stimulation determines the fate of naïve and effector cells. Immunity 8, 89–95 (1998).

    Article  CAS  Google Scholar 

  30. Celli, S., Lemaître, F. & Bousso, P. Real-time manipulation of T cell-dendritic cell interactions in vivo reveals the importance of prolonged contacts for CD4+ T cell activation. Immunity 27, 625–634 (2007).

    Article  CAS  Google Scholar 

  31. Sanchez-Sanchez, N. et al. Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood 104, 619–625 (2004).

    Article  CAS  Google Scholar 

  32. Sabatos, C.A. et al. A synapsis basis for paracrine interleukin-2 signaling during homotypic T cell interaction. Immunity 29, 238–248 (2008).

    Article  CAS  Google Scholar 

  33. Pozarowski, P. et al. Interactions of fluorochrome-labeled caspases inhibitors with apoptotic cells: a caution in data interpretation. Cytometry A 55, 50–60 (2003).

    Article  CAS  Google Scholar 

  34. Lovborg, H., Nygren, P. & Larsson, R. Multiparametric evaluation of apoptosis: effects of standard cytotoxic agents and cyanoguanidine CHS 828. Mol. Cancer Ther. 3, 521–526 (2004).

    Article  Google Scholar 

  35. Várnai, P. & Balla, T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J. Cell Biol. 143, 501–510 (1998).

    Article  Google Scholar 

  36. Costello, P.S., Gallagher, P.J. & Cantrell, D.A. Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse. Nat. Immunol. 3, 1082–1089 (2002).

    Article  CAS  Google Scholar 

  37. Vlahakis, S.R. et al. G protein-coupled chemokine receptors induce both survival and apoptotic signaling pathways. J. Immunol. 169, 5546–5554 (2002).

    Article  CAS  Google Scholar 

  38. Schmid, J.A. et al. Dynamics of NF κB and IκBα studied with green fluorescent protein (GFP) fusion proteins. Investigation of GFP-p65 binding to DNA by fluorescence resonance energy transfer. J. Biol. Chem. 275, 17035–17042 (2000).

    Article  CAS  Google Scholar 

  39. Saccani, S., Pantano, S. & Natoli, G. Modulation of NF-κB activity by exchange of dimers. Mol. Cell 11, 1563–1574 (2003).

    Article  CAS  Google Scholar 

  40. Chen, G. & Goeddel, D.V. TNF-R1 signaling: a beautiful pathway. Science 296, 1634–1635 (2002).

    Article  CAS  Google Scholar 

  41. Zhang, X. et al. Phosphorylation of serine 256 suppresses transactivation by FKHR (FOXO1) by multiple mechanisms. Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA binding. J. Biol. Chem. 277, 45276–45284 (2002).

    Article  CAS  Google Scholar 

  42. Schreiber, E., Matthias, P., Muller, M.M. & Schaffner, W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 17, 6419 (1989).

    Article  CAS  Google Scholar 

  43. Kim, K.D., Choe, Y.K., Choe, I.S. & Lim, J.S. Inhibition of glucocorticoid-mediated, caspase-independent dendritic cell death by CD40 activation. J. Leukoc. Biol. 69, 426–434 (2001).

    CAS  PubMed  Google Scholar 

  44. Miga, A.J. et al. Dendritic cell longevity and T-cell persistence is controlled by CD154–CD40 interactions. Eur. J. Immunol. 31, 959–965 (2001).

    Article  CAS  Google Scholar 

  45. Hanks, B.A. et al. Re-engineered CD40 receptor enables potent pharmacological activation of dendritic-cell cancer vaccines in vivo. Nat. Med. 11, 130–137 (2005).

    Article  CAS  Google Scholar 

  46. Revy, P., Sospedra, M., Barbour, B. & Trautmann, A. Functional antigen-independent synapses formed between T cells and dendritic cells. Nat. Immunol. 2, 925–931 (2001).

    Article  CAS  Google Scholar 

  47. Kondo, T. et al. Dendritic cells signal T cells in the absence of exogenous antigen. Nat. Immunol. 2, 932–938 (2001).

    Article  CAS  Google Scholar 

  48. Rodriguez-Fernandez, J.L. et al. Rho and ROCK modulate the tyrosine kinase PYK2 in T-cells through regulation of the activity of the integrin LFA-1. J. Biol. Chem. 276, 40518–40527 (2001).

    Article  CAS  Google Scholar 

  49. Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

    Article  CAS  Google Scholar 

  50. Riol-Blanco, L. et al. The neuronal protein Kidins220 localizes in a raft compartment at the leading edge of motile immature dendritic cells. Eur. J. Immunol. 34, 108–118 (2004).

    Article  CAS  Google Scholar 

  51. Luty, W.H., Rodeberg, D., Parness, J. & Vyas, Y.M. Antiparallel segregation of notch components in the immunological synapse directs reciprocal signaling in allogeneic Th:DC conjugates. J. Immunol. 179, 819–829 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.L. Corbí and V.S. Martínez for their support, G. de la Rosa for help in the initial stages of this project, C. Ardavín for OTII mice, J. Villarejo and I. Treviño for help in obtaining blood samples, R. Borstein for umbilical cords, J.A. Schmid (Medical University of Vienna) for the p65-GFP construct, T. Balla (US National Institutes of Health) for the PH (Akt)-GFP plasmid, T.G. Unterman for the FOXO1-GFP plasmid, N. Hogg (Cancer Research UK) for anti-LFA-1 α-subunit, P. Lastres for help with the cytometer, A. García-Sánz for discussions and C. Escribano-Díaz for critical reading of the manuscript. Supported by (Ministerio de Educación y Ciencia (BFI-2001-0228 and SAF2005-00801), RETICS Program/Instituto de Salud Carlos III (RIER) (RD08/0075 to J.L.R.-F.), Ministerio de Sanidad (scholarship associated with PI021058 to L.R.-B.) and the Ministerio de Educación y Ciencia of Spain (fellowships FPI to C.D.-M. and FPU to N.S.-S.).

Author information

Authors and Affiliations

Authors

Contributions

L.R.-B., C.D.-M. and J.L.R.-F. designed research; L.R.-B., C.D.-M., N.S.-S., L.M.A.-C. and G.M.d.H. performed research; L.M.A.-C., M.D.G.-L., G.M.d.H., J.N., F.S.-M., P.S.-M. and C.C., provided analytical tools; L.R.-B., C.D.-M. and J.L.R.-F. analyzed data; J.L.R.-F. wrote the paper.

Corresponding author

Correspondence to José Luis Rodríguez-Fernández.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 1235 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riol-Blanco, L., Delgado-Martín, C., Sánchez-Sánchez, N. et al. Immunological synapse formation inhibits, via NF-κB and FOXO1, the apoptosis of dendritic cells. Nat Immunol 10, 753–760 (2009). https://doi.org/10.1038/ni.1750

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing