Cytokine-secreting follicular T cells shape the antibody repertoire

Abstract

High-affinity antibodies are critical for host protection and underlie successful vaccines. The generation of such antibodies requires T cell–dependent help, which mediates germinal center reactions in which mutation and selection of B cells occurs. Using an interleukin 4–reporter system, we show here that CD4+ follicular helper T cells constituted essentially all of the cytokine-secreting T cells in lymph nodes and were functionally distinct from T cells secreting the same cytokine in peripheral tissues. Follicular helper T cells with different cytokine profiles could be isolated as conjugates with B cells undergoing cytokine-specific immunoglobulin class switching with evidence of somatic hypermutation. Our findings support a model in which B cells compete for cytokines produced by follicular helper T cells that shape the affinity and isotype of the antibody response.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Kinetics and identification of IL-4-producing cells in draining lymph nodes after infection with L. major.
Figure 2: IL-4-producing cells in the lymph nodes of 4get-KN2 mice coexpress ICOS, CXCR5 and huCD2 after L. major infection.
Figure 3: ICOS regulates IL-4 production by TFH cells.
Figure 4: IL-4-producing CD4 T cells in lymph nodes are TFH cells and are functionally distinct from canonical TH2 cells.
Figure 5: B cell–T cell conjugates regulate immunoglobulin class switching.
Figure 6: Somatic hypermutation in the JH4 intron and VH186.2 region.
Figure 7: Function of IL-4-producing TFH cells in the generation and affinity maturation of plasma cells.

References

  1. 1

    MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    CAS  Article  Google Scholar 

  2. 2

    Kelsoe, G. Life and death in germinal centers (redux). Immunity 4, 107–111 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Allen, C.D., Okada, T. & Cyster, J.G. Germinal-center organization and cellular dynamics. Immunity 27, 190–202 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Fang, Y., Xu, C., Fu, Y.X., Holers, V.M. & Molina, H. Expression of complement receptors 1 and 2 on follicular dendritic cells is necessary for the generation of a strong antigen-specific IgG response. J. Immunol. 160, 5273–5279 (1998).

    CAS  PubMed  Google Scholar 

  5. 5

    Hannum, L.G., Haberman, A.M., Anderson, S.M. & Shlomchik, M.J. Germinal center initiation, variable gene region hypermutation, and mutant B cell selection without detectable immune complexes on follicular dendritic cells. J. Exp. Med. 192, 931–942 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Huntington, N.D. et al. CD45 links the B cell receptor with cell survival and is required for the persistence of germinal centers. Nat. Immunol. 7, 190–198 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Allen, D., Simon, T., Sablitzky, F., Rajewsky, K. & Cumano, A. Antibody engineering for the analysis of affinity maturation of an anti-hapten response. EMBO J. 7, 1995–2001 (1988).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Meyer-Hermann, M.E., Maini, P.K. & Iber, D. An analysis of B cell selection mechanisms in germinal centers. Math. Med. Biol. 23, 255–277 (2006).

    Article  PubMed  Google Scholar 

  9. 9

    Allen, C.D., Okada, T., Tang, H.L. & Cyster, J.G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Schwickert, T.A. et al. In vivo imaging of germinal centres reveals a dynamic open structure. Nature 446, 83–87 (2007).

    CAS  Article  Google Scholar 

  11. 11

    King, C., Tangye, S.G. & Mackay, C.R. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 26, 741–766 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Fazilleau, N., McHeyzer-Williams, L.J. & McHeyzer-Williams,, M.G. Local development of effector and memory T helper cells. Curr. Opin. Immunol. 19, 259–267 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Garside, P. et al. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281, 96–99 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Takahashi, Y., Dutta, P.R., Cerasoli, D.M. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. V. Affinity maturation develops in two stages of clonal selection. J. Exp. Med. 187, 885–895 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 173, 68–78 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Vogelzang, A. et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29, 127–137 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Nurieva, R.I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29, 138–149 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Mohrs, K., Wakil, A.E., Killeen, N., Locksley, R.M. & Mohrs, M. A two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity 23, 419–429 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Vinuesa, C.G., Tangye, S.G., Moser, B. & Mackay, C.R. Follicular B helper T cells in antibody responses and autoimmunity. Nat. Rev. Immunol. 5, 853–865 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Loke, P. et al. Inducible costimulator is required for type 2 antibody isotype switching but not T helper cell type 2 responses in chronic nematode infection. Proc. Natl. Acad. Sci. USA. 102, 9872–9877 (2005).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature 409, 105–109 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Dong, C., Temann, U.A. & Flavell, R.A. Cutting edge: critical role of inducible costimulator in germinal center reactions. J. Immunol. 166, 3659–3662 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Finkelman, F.D. et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol. Rev. 201, 139–155 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Voehringer, D., Shinkai, K. & Locksley, R.M. Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20, 267–277 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Casamayor-Palleja, M., Feuillard, J., Ball, J., Drew, M. & MacLennan, I.C. Centrocytes rapidly adopt a memory B cell phenotype on co-culture with autologous germinal centre T cell-enriched preparations. Int. Immunol. 8, 737–744 (1996).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Reiner, S.L., Zheng, S., Wang, Z.E., Stowring, L. & Locksley, R.M. Leishmania promastigotes evade interleukin 12 (IL-12) induction by macrophages and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection. J. Exp. Med. 179, 447–456 (1994).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Bothwell, A.L. et al. Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a γ2a variable region. Cell 24, 625–637 (1981).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Rajewsky, K., Forster, I. & Cumano, A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science 238, 1088–1094 (1987).

    CAS  Article  Google Scholar 

  32. 32

    Jolly, C.J., Klix, N. & Neuberger, M.S. Rapid methods for the analysis of immunoglobulin gene hypermutation: application to transgenic and gene targeted mice. Nucleic Acids Res. 25, 1913–1919 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Dorsett, Y. et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28, 630–638 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Reiter, R. & Pfeffer, K. Impaired germinal centre formation and humoral immune response in the absence of CD28 and interleukin-4. Immunology 106, 222–228 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Vajdy, M., Kosco-Vilbois, M.H., Kopf, M., Kohler, G. & Lycke, N. Impaired mucosal immune responses in interleukin 4-targeted mice. J. Exp. Med. 181, 41–53 (1995).

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Andoh, A., Masuda, A., Yamakawa, M., Kumazawa, Y. & Kasajima, T. Absence of interleukin-4 enhances germinal center reaction in secondary immune response. Immunol. Lett. 73, 35–41 (2000).

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Itano, A.A. & Jenkins, M.K. Antigen presentation to naive CD4 T cells in the lymph node. Nat. Immunol. 4, 733–739 (2003).

    CAS  Article  Google Scholar 

  38. 38

    Nimmerjahn, F. & Ravetch, J.V. Fcγ receptors: old friends and new family members. Immunity 24, 19–28 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Reichert, P., Reinhardt, R.L., Ingulli, E. & Jenkins, M.K. Cutting edge: in vivo identification of TCR redistribution and polarized IL-2 production by naive CD4 T cells. J. Immunol. 166, 4278–4281 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Maldonado, R.A., Irvine, D.J., Schreiber, R. & Glimcher, L.H. A role for the immunological synapse in lineage commitment of CD4 lymphocytes. Nature 431, 527–532 (2004).

    CAS  Article  Google Scholar 

  41. 41

    Phan, T.G. et al. High affinity germinal center B cells are actively selected into the plasma cell compartment. J. Exp. Med. 203, 2419–2424 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Tarlinton, D.M. Evolution in miniature: selection, survival and distribution of antigen reactive cells in the germinal centre. Immunol. Cell Biol. 86, 133–138 (2008).

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Jacob, J., Przylepa, J., Miller, C. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and selection in germinal center B cells. J. Exp. Med. 178, 1293–1307 (1993).

    CAS  Article  Google Scholar 

  44. 44

    Dal Porto, J.M., Haberman, A.M., Shlomchik, M.J. & Kelsoe, G. Antigen drives very low affinity B cells to become plasmacytes and enter germinal centers. J. Immunol. 161, 5373–5381 (1998).

    CAS  PubMed  Google Scholar 

  45. 45

    Zhou, C., Saxon, A. & Zhang, K. Human activation-induced cytidine deaminase is induced by IL-4 and negatively regulated by CD45: implication of CD45 as a Janus kinase phosphatase in antibody diversification. J. Immunol. 170, 1887–1893 (2003).

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Dedeoglu, F., Horwitz, B., Chaudhuri, J., Alt, F.W. & Geha, R.S. Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFκB. Int. Immunol. 16, 395–404 (2004).

    CAS  Article  Google Scholar 

  47. 47

    de Leval, L. et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109, 4952–4963 (2007).

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Zangani, M.M. et al. Lymphomas can develop from B cells chronically helped by idiotype-specific T cells. J. Exp. Med. 204, 1181–1191 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Shinkai, K., Mohrs, M. & Locksley, R.M. Helper T cells regulate type-2 innate immunity in vivo. Nature 420, 825–829 (2002).

    CAS  Article  Google Scholar 

  50. 50

    Lalor, P.A., Nossal, G.J., Sanderson, R.D. & McHeyzer-Williams, M.G. Functional and molecular characterization of single, (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific, IgG1+ B cells from antibody-secreting and memory B cell pathways in the C57BL/6 immune response to NP. Eur. J. Immunol. 22, 3001–3011 (1992).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank G. Kelsoe (Duke University), M. Nussenzweig (Rockefeller University), K. McBride (Rockefeller University) and A. N. McKenzie (Trinity College, Dublin) for reagents and suggestions; J. Cyster, A. DeFranco and C. Allen for review and comments; and N. Flores, L. Stowring and C. McArthur for technical expertise. Supported by the National Institutes of Allergy and Infectious Diseases (AI026918 and AI077439), the Howard Hughes Medical Institute, the Sandler Asthma Basic Research Center of the University of California San Francisco and the Juvenile Diabetes Research Foundation–Irvington Institute (R.L.R.).

Author information

Affiliations

Authors

Contributions

R.L.R. and R.M.L. conceived the work; R.L.R. designed, did and analyzed experiments for Figures 1, 2, 3, 4, 5 and 7; R.L.R. helped do and analyze Figure 6; H.-E.L. designed, did and analyzed experiments for Figures 5 and 6; R.M.L. designed experiments; R.L.R and R.M.L. wrote the manuscript; and all authors read and provided comments on the manuscript.

Corresponding author

Correspondence to Richard M Locksley.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Tables 1–2 (PDF 11972 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reinhardt, R., Liang, HE. & Locksley, R. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat Immunol 10, 385–393 (2009). https://doi.org/10.1038/ni.1715

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing