Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues

Abstract

Dendritic cell (DC) development begins in the bone marrow but is not completed until after immature progenitors reach their sites of residence in lymphoid organs. The hematopoietic growth factors regulating these processes are poorly understood. Here we examined the effects of signaling by the receptor tyrosine kinase Flt3 on macrophage DC progenitors in the bone marrow and on peripheral DCs. We found that the macrophage DC progenitor compartment was responsive to superphysiological amounts of Flt3 ligand but was not dependent on Flt3 for its homeostatic maintenance in vivo. In contrast, Flt3 was essential to the regulation of homeostatic DC development in the spleen, where it was needed to maintain normal numbers of DCs by controlling their division in the periphery.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of cDC progenitors.
Figure 2: Effects of stimulation with Flt3L.
Figure 3: Myeloid compartments of Flt3−/− mice.
Figure 4: DC development in Flt3−/− bone marrow chimeras.
Figure 5: Flt3 in peripheral expansion.

Similar content being viewed by others

References

  1. Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Steinman, R.M. & Banchereau, J. Taking dendritic cells into medicine. Nature 449, 419–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, Y.J. IPC: professional type 1 interferon–producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23, 275–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Villadangos, J.A. & Schnorrer, P. Intrinsic and cooperative antigen–presenting functions of dendritic–cell subsets in vivo. Nat. Rev. Immunol. 7, 543–555 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Fogg, D.K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Varol, C. et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 204, 171–180 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Onai, N. et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat. Immunol. 8, 1207–1216 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Naik, S.H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8, 1217–1226 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, K. et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat. Immunol. 8, 578–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Kabashima, K. et al. Intrinsic lymphotoxin-β receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity 22, 439–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Diao, J., Winter, E., Chen, W., Xu, F. & Cattral, M.S. Antigen transmission by replicating antigen–bearing dendritic cells. J. Immunol. 179, 2713–2721 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Karsunky, H., Merad, M., Cozzio, A., Weissman, I.L. & Manz, M.G. Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid–committed progenitors to Flt3+ dendritic cells in vivo. J. Exp. Med. 198, 305–313 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maraskovsky, E. et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand–treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 184, 1953–1962 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Brasel, K. et al. Hematologic effects of flt3 ligand in vivo in mice. Blood 88, 2004–2012 (1996).

    CAS  PubMed  Google Scholar 

  15. Whartenby, K.A. et al. Inhibition of FLT3 signaling targets DCs to ameliorate autoimmune disease. Proc. Natl. Acad. Sci. USA 102, 16741–16746 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tussiwand, R., Onai, N., Mazzucchelli, L. & Manz, M.G. Inhibition of natural type I IFN–producing and dendritic cell development by a small molecule receptor tyrosine kinase inhibitor with Flt3 affinity. J. Immunol. 175, 3674–3680 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Traver, D. et al. Development of CD8α-positive dendritic cells from a common myeloid progenitor. Science 290, 2152–2154 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. D'Amico, A. & Wu, L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med. 198, 293–303 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, L. et al. Development of thymic and splenic dendritic cell populations from different hemopoietic precursors. Blood 98, 3376–3382 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Dakic, A. et al. Development of the dendritic cell system during mouse ontogeny. J. Immunol. 172, 1018–1027 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Sun, C.M., Fiette, L., Tanguy, M., Leclerc, C. & Lo-Man, R. Ontogeny and innate properties of neonatal dendritic cells. Blood 102, 585–591 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Naik, S.H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 7, 663–671 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Mackarehtschian, K. et al. Targeted disruption of the flk2fk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 3, 147–161 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Ginhoux, F. et al. Langerhans cells arise from monocytes in vivo. Nat. Immunol. 7, 265–273 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shigematsu, H. et al. Plasmacytoid dendritic cells activate lymphoid-specific genetic programs irrespective of their cellular origin. Immunity 21, 43–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Christensen, J.L. & Weissman, I.L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl. Acad. Sci. USA 98, 14541–14546 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sitnicka, E. et al. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 17, 463–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Laouar, Y., Welte, T., Fu, X.Y. & Flavell, R.A. STAT3 is required for Flt3L–dependent dendritic cell differentiation. Immunity 19, 903–912 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. McKenna, H.J. et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95, 3489–3497 (2000).

    CAS  PubMed  Google Scholar 

  30. del Hoyo, G.M. et al. Characterization of a common precursor population for dendritic cells. Nature 415, 1043–1047 (2002).

    Article  PubMed  Google Scholar 

  31. Robb, L. et al. Hematopoietic and lung abnormalities in mice with a null mutation of the common β subunit of the receptors for granulocyte–macrophage colony–stimulating factor and interleukins 3 and 5. Proc. Natl. Acad. Sci. USA 92, 9565–9569 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Waskow, C., Terszowski, G., Costa, C., Gassmann, M. & Rodewald, H.R. Rescue of lethal c-KitW/W mice by erythropoietin. Blood 104, 1688–1695 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Herzenberg, L.A., Tung, J., Moore, W.A. & Parks, D.R. Interpreting flow cytometry data: a guide for the perplexed. Nat. Immunol. 7, 681–685 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Amgen for recombinant human Flt3L; I. Lemischka (Mount Sinai School of Medicine) for Flt3−/− mice; L. Robb (Walter and Eliza Hall Institute of Medical Research) and G. Begley (Amgen) for mice deficient in GM-CSF receptor-α; C.G. Park (Rockefeller University) for monoclonal antibodies to CD169 and SIGNR1; R. Steinman and A. Kamphorst for critical reading of the manuscript; and M. Suarez–Farinas for help with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Waskow.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 (PDF 673 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waskow, C., Liu, K., Darrasse-Jèze, G. et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 9, 676–683 (2008). https://doi.org/10.1038/ni.1615

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1615

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing