Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct proteasome-independent cross-presentation of viral antigen by plasmacytoid dendritic cells on major histocompatibility complex class I

Abstract

Although plasmacytoid dendritic cells (pDCs) respond to virus replication in a nonspecific way by producing large amounts of type I interferon, a rapid, direct function for pDCs in activating antiviral lymphocytes is less apparent. Here we show that pDCs were able to rapidly initiate antigen-specific antiviral CD8+ T cell responses. After being exposed to virus, pDCs efficiently and rapidly internalized exogenous viral antigens and then presented those antigens on major histocompatibility complex (MHC) class I to CD8+ T cells. Processing of exogenous antigen occurred in endocytic organelles and did not require transit of antigen to the cytosol. Intracellular stores of MHC class I partially localized together with the transferrin receptor and internalized transferrin in endosomes, which suggested that such recycling endosomes are sites for loading peptide onto MHC class I or for peptide transit. Our data demonstrate that pDCs use 'ready-made' stores of MHC class I to rapidly present exogenous antigen to CD8+ T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activated pDCs are powerful activators of allogeneic CD8+ T cells.
Figure 2: The pDCs cross-present influenza virus antigen more rapidly and efficiently than do mDCs.
Figure 3: MHC class I exists in large perinuclear intracellular pools in pDCs and rapidly translocates to the cell surface after viral activation of pDCs.
Figure 4: MHC class I is not located in the traditional endoplasmic reticulum-Golgi transport pathway in pDCs.
Figure 5: Intracellular stores of MHC class I are located in the recycling endosomal compartment in immature pDCs.

Similar content being viewed by others

References

  1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  2. Shortman, K. & Liu, Y.J. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151–161 (2002).

    Article  CAS  Google Scholar 

  3. Mellman, I. & Steinman, R.M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).

    Article  CAS  Google Scholar 

  4. Reis e Sousa, C. Dendritic cells in a mature age. Nat. Rev. Immunol. 6, 476–483 (2006).

    Article  CAS  Google Scholar 

  5. Watts, C. The exogenous pathway for antigen presentation on major histocompatibility complex class II and CD1 molecules. Nat. Immunol. 5, 685–692 (2004).

    Article  CAS  Google Scholar 

  6. Trombetta, E.S. & Mellman, I. Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23, 975–1028 (2005).

    Article  CAS  Google Scholar 

  7. Pierre, P. et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388, 787–792 (1997).

    Article  CAS  Google Scholar 

  8. Turley, S.J. et al. Transport of peptide-MHC class II complexes in developing dendritic cells. Science 288, 522–527 (2000).

    Article  CAS  Google Scholar 

  9. Chow, A., Toomre, D., Garrett, W. & Mellman, I. Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 418, 988–994 (2002).

    Article  CAS  Google Scholar 

  10. Inaba, K. et al. The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med. 191, 927–936 (2000).

    Article  CAS  Google Scholar 

  11. Cresswell, P., Ackerman, A.L., Giodini, A., Peaper, D.R. & Wearsch, P.A. Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol. Rev. 207, 145–157 (2005).

    Article  CAS  Google Scholar 

  12. Shen, L. & Rock, K.L. Priming of T cells by exogenous antigen cross-presented on MHC class I molecules. Curr. Opin. Immunol. 18, 85–91 (2006).

    Article  CAS  Google Scholar 

  13. Huang, A.Y., Bruce, A.T., Pardoll, D.M. & Levitsky, H.I. In vivo cross-priming of MHC class I-restricted antigens requires the TAP transporter. Immunity 4, 349–355 (1996).

    Article  CAS  Google Scholar 

  14. Shen, L., Sigal, L.J., Boes, M. & Rock, K.L. Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity 21, 155–165 (2004).

    Article  CAS  Google Scholar 

  15. Guermonprez, P. et al. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425, 397–402 (2003).

    Article  CAS  Google Scholar 

  16. Houde, M. et al. Phagosomes are competent organelles for antigen cross-presentation. Nature 425, 402–406 (2003).

    Article  CAS  Google Scholar 

  17. Touret, N. et al. Quantitative and dynamic assessment of the contribution of the ER to phagosome formation. Cell 123, 157–170 (2005).

    Article  CAS  Google Scholar 

  18. Asselin-Paturel, C. et al. Type I interferon dependence of plasmacytoid dendritic cell activation and migration. J. Exp. Med. 201, 1157–1167 (2005).

    Article  CAS  Google Scholar 

  19. Liu, Y.J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23, 275–306 (2005).

    Article  CAS  Google Scholar 

  20. Garcia-Sastre, A. & Biron, C.A. Type 1 interferons and the virus-host relationship: a lesson in detente. Science 312, 879–882 (2006).

    Article  CAS  Google Scholar 

  21. Yoneyama, H. et al. Plasmacytoid DCs help lymph node DCs to induce anti-HSV CTLs. J. Exp. Med. 202, 425–435 (2005).

    Article  CAS  Google Scholar 

  22. Smit, J.J., Rudd, B.D. & Lukacs, N.W. Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. J. Exp. Med. 203, 1153–1159 (2006).

    Article  CAS  Google Scholar 

  23. Kuchtey, J., Chefalo, P.J., Gray, R.C., Ramachandra, L. & Harding, C.V. Enhancement of dendritic cell antigen cross-presentation by CpG DNA involves type I IFN and stabilization of class I MHC mRNA. J. Immunol. 175, 2244–2251 (2005).

    Article  CAS  Google Scholar 

  24. Fonteneau, J.F. et al. Activation of influenza virus-specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood 101, 3520–3526 (2003).

    Article  CAS  Google Scholar 

  25. Moseman, E.A. et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. J. Immunol. 173, 4433–4442 (2004).

    Article  CAS  Google Scholar 

  26. Gilliet, M. & Liu, Y.J. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med. 195, 695–704 (2002).

    Article  CAS  Google Scholar 

  27. Ito, T. et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J. Exp. Med. 204, 105–115 (2007).

    Article  CAS  Google Scholar 

  28. Stern, L.J., Potolicchio, I. & Santambrogio, L. MHC class II compartment subtypes: structure and function. Curr. Opin. Immunol. 18, 64–69 (2006).

    Article  CAS  Google Scholar 

  29. MacAry, P.A. et al. Mobilization of MHC class I molecules from late endosomes to the cell surface following activation of CD34-derived human Langerhans cells. Proc. Natl. Acad. Sci. USA 98, 3982–3987 (2001).

    Article  CAS  Google Scholar 

  30. Gromme, M. et al. Recycling MHC class I molecules and endosomal peptide loading. Proc. Natl. Acad. Sci. USA 96, 10326–10331 (1999).

    Article  CAS  Google Scholar 

  31. Guiducci, C. et al. Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J. Exp. Med. 203, 1999–2008 (2006).

    Article  CAS  Google Scholar 

  32. Lizee, G. et al. Control of dendritic cell cross-presentation by the major histocompatibility complex class I cytoplasmic domain. Nat. Immunol. 4, 1065–1073 (2003).

    Article  CAS  Google Scholar 

  33. van Weert, A.W., Geuze, H.J., Groothuis, B. & Stoorvogel, W. Primaquine interferes with membrane recycling from endosomes to the plasma membrane through a direct interaction with endosomes which does not involve neutralisation of endosomal pH nor osmotic swelling of endosomes. Eur. J. Cell Biol. 79, 394–399 (2000).

    Article  CAS  Google Scholar 

  34. Delamarre, L., Holcombe, H. & Mellman, I. Presentation of exogenous antigens on major histocompatibility complex (MHC) class I and MHC class II molecules is differentially regulated during dendritic cell maturation. J. Exp. Med. 198, 111–122 (2003).

    Article  CAS  Google Scholar 

  35. Neumann, A.U. et al. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282, 103–107 (1998).

    Article  CAS  Google Scholar 

  36. Grouard, G. et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185, 1101–1111 (1997).

    Article  CAS  Google Scholar 

  37. Siegal, F.P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999).

    Article  CAS  Google Scholar 

  38. Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5, 919–923 (1999).

    Article  CAS  Google Scholar 

  39. Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005).

    Article  CAS  Google Scholar 

  40. Hoeffel, G. et al. Antigen crosspresentation by human plasmacytoid dendritic cells. Immunity 27, 481–492 (2007).

    Article  CAS  Google Scholar 

  41. Itano, A.A. et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19, 47–57 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.K. Palucka, M. Pypaert, J. Shay, Y. Xu and C. Xu. Anti-ERGIC-53 was provided by A. Satoh (Yale University School of Medicine). Supported by the Baylor Health Care Systems Foundation, the Dana Foundation (J.E.C.), the Ludwig Institute for Cancer Research, the National Institutes of Health (R01 CA078846-08, R01 AI068842-01 and U19 AI057234 to J.B.; R01 R37AI34098 to I.M.) and the Italian Foundation for Cancer Research (T.D.).

Author information

Authors and Affiliations

Authors

Contributions

T.D. designed, did and analyzed experiments; B.C., A.S., J.E.C. and S.C. designed, did and analyzed imaging experiments; A.P. and Y.X. assisted in cellular isolation and analysis; M.M. provided influenza virus–specific T cell lines; J.E.C., J.B., I.M. and T.D. prepared the manuscript; J.B. and I.M. provided intellectual guidance on the project; and J.E.C. conceptualized and designed the project.

Corresponding authors

Correspondence to Jacques Banchereau or John E Connolly.

Ethics declarations

Competing interests

Tiziana Di Pucchio, Bithi Chatterjee, Anna Smed-Sörensen, Sandra Clayton, Adam Palazzo, Monica Montes, Yaming Xue, Ira Mellman, Jacques Banchereau & John E Connolly B.C., A.S.-S. and I.M. are employees of Genentech.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 299 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Pucchio, T., Chatterjee, B., Smed-Sörensen, A. et al. Direct proteasome-independent cross-presentation of viral antigen by plasmacytoid dendritic cells on major histocompatibility complex class I. Nat Immunol 9, 551–557 (2008). https://doi.org/10.1038/ni.1602

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1602

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing