Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tectonic history of the Earth’s inner core preserved in its seismic structure

Abstract

The Earth’s inner core is structurally complex and its texture as well as the degree of its seismic anisotropy1 varies with depth2. In the modern inner core, an uppermost isotropic layer3,4 surrounds a deeper and more anisotropic region that includes the seismically distinct innermost inner core5,6,7. This structural complexity is probably related to strain resulting from the growth of the inner core8. However, as most dynamic models of anisotropy generation8,9,10,11 have considered only current deformation, how strain evolved through time and influenced texture is not fully understood. Here we use a numerical model to couple preferential crystallization in the equatorial region of the inner core8 with density stratification arising from inner-core growth, allowing both to evolve over the entire history of the inner core. Our results suggest that the inner core evolves gradually from a regime in which deformation penetrates into the deepest parts to a regime in which it is confined to the uppermost region. The deep anisotropy is therefore best understood as a fossil anisotropy inherited from horizontal Maxwell stresses (arising because of the magnetic field)10 or texture formation during solidification12,13,14. The structure of the upper layers, on the other hand, probably results from active tectonics induced by heterogeneous growth of the inner core.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stability diagram of the inner core.
Figure 2: Evolution with time of the flow induced by preferential growth of the inner core at the Equator.

Similar content being viewed by others

References

  1. Poupinet, G., Pillet, R. & Souriau, A. Possible heterogeneity of the Earth’s core deduced from PKIKP travel times. Nature 305, 204–206 (1983).

    Article  Google Scholar 

  2. Souriau, A. in Treatise on Geophysics Vol. 1 (ed. Schubert, G.) (Elsevier, 2007).

    Google Scholar 

  3. Garcia, R. & Souriau, A. Inner core anisotropy and heterogeneity level. Geophys. Res. Lett. 27, 3121–3124 (2000).

    Article  Google Scholar 

  4. Niu, F. L. & Wen, L. X. Hemispherical variations in seismic velocity at the top of the Earth’s inner core. Nature 410, 1081–1084 (2001).

    Article  Google Scholar 

  5. Ishii, M. & Dziewonski, A. M. The innermost inner core of the earth: Evidence for a change in anisotropic behavior at the radius of about 300 km. Proc. Natl Acad. Sci. USA 99, 14026–14030 (2002).

    Article  Google Scholar 

  6. Sun, X. & Song, X. The inner inner core of the Earth: Texturing of iron crystals from three-dimensional seismic anisotropy. Earth Planet. Sci. Lett. 269, 56–65 (2008).

    Article  Google Scholar 

  7. Niu, F. L. & Wen, L. X. Seismic evidence for distinct anisotropy in the innermost inner core. Nature Geosci. 1, 692–696 (2008).

    Article  Google Scholar 

  8. Yoshida, S., Sumita, I. & Kumazawa, M. Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy. J. Geophys. Res. 101, 28085–28104 (1996).

    Article  Google Scholar 

  9. Jeanloz, R. & Wenk, H.-R. Convection and anisotropy of the inner core. Geophys. Res. Lett. 15, 72–75 (1988).

    Article  Google Scholar 

  10. Karato, S.-I. Seismic anisotropy of the Earth’s inner core resulting from flow induced by Maxwell stresses. Nature 402, 871–873 (1999).

    Article  Google Scholar 

  11. Buffett, B. A. & Wenk, H.-R. Texturing of the Earth’s inner core by Maxwell stresses. Nature 413, 60–63 (2001).

    Article  Google Scholar 

  12. Karato, S.-I. Inner core anisotropy due to the magnetic field-induced preferred orientation of iron. Science 262, 1708–1711 (1993).

    Article  Google Scholar 

  13. Bergman, M. I. Measurements of elastic anisotropy due to solidification texturing and the implications for the Earth’s inner core. Nature 389, 60–63 (1997).

    Article  Google Scholar 

  14. Brito, D., Elbert, D. & Olson, P. Experimental crystallization of gallium: Ultrasonic measurements of elastic anisotropy and implications for the inner core. Phys. Earth Planet. Inter. 129, 325–346 (2002).

    Article  Google Scholar 

  15. Alf è, D., Gillan, M. J. & Price, G. D. Ab initio chemical potentials of solid and liquid solutions and the chemistry of the Earth’s core. J. Chem. Phys. 116, 7127–7136 (2002).

    Article  Google Scholar 

  16. Badro, J. et al. Effect of light elements on the sound velocities in solid iron: Implications for the composition of Earth’s core. Earth Planet. Sci. Lett. 254, 233–238 (2007).

    Article  Google Scholar 

  17. Nimmo, F. in Treatise on Geophysics Vol. 8 (ed. Schubert, G.) (Elsevier, 2007).

    Google Scholar 

  18. Yukutake, T. Implausibility of thermal convection in the Earth’s solid inner core. Phys. Earth Planet. Inter. 108, 1–13 (1998).

    Article  Google Scholar 

  19. Turner, J. S. Buoyancy Effects in Fluids (Cambridge Univ. Press, 1980).

    Google Scholar 

  20. Buffett, B. A. & Bloxham, J. Deformation of Earth’s inner core by electromagnetic forces. Geophys. Res. Lett. 27, 4001–4004 (2000).

    Article  Google Scholar 

  21. Glatzmaier, G. A. & Roberts, P. H. Dynamo theory then and now. Int. J. Eng. Sci. 36, 1325–1338 (1998).

    Google Scholar 

  22. Bergman, M. I., MacLeod-Silberstein, M., Haskel, M., Chandler, B. & Akpan, N. A laboratory model for solidification of Earth’s core. Phys. Earth Planet. Inter. 153, 150–164 (2005).

    Article  Google Scholar 

  23. Aubert, J., Amit, H., Hulot, G. & Olson, P. Thermochemical flows couple the Earth’s inner core growth to mantle heterogeneity. Nature 454, 758–761 (2008).

    Article  Google Scholar 

  24. Labrosse, S., Poirier, J.-P. & Le Mouël, J.-L. The age of the inner core. Earth Planet. Sci. Lett. 190, 111–123 (2001).

    Article  Google Scholar 

  25. Wenk, H.-R., Matthies, S., Hemley, R. J., Mao, H.-K. & Shu, J. The plastic deformation of iron at pressures of the Earth’s inner core. Nature 405, 1044–1047 (2000).

    Article  Google Scholar 

  26. Van Orman, J. A. On the viscosity and creep mechanism of Earth’s inner core. Geophys. Res. Lett. 31, 20606 (2004).

    Article  Google Scholar 

  27. Poirier, J. P. & Price, G. D. Primary slip system of ε-iron and anisotropy of the Earth’s inner core. Phys. Earth Planet. Inter. 110, 147–156 (1999).

    Article  Google Scholar 

  28. Sumita, I. & Olson, P. A laboratory model for convection in Earth’s core driven by a thermally heterogeneous mantle. Science 286, 1547–1549 (1999).

    Article  Google Scholar 

  29. Albarède, F. Introduction to Geochemical Modeling (Cambridge Univ. Press, 1996) (ISBN 0521578043).

    Google Scholar 

  30. Vočadlo, L. in Treatise on Geophysics Vol. 2 (ed. Schubert, G.) (Elsevier, 2007).

    Google Scholar 

Download references

Acknowledgements

We would like to thank P. Olson, C. Finlay, N. Arndt, J. Serafini and the Geodynamo group (LGIT, Grenoble) for discussions and comments on this letter. This work was supported by the SEDIT programme of CNRS-INSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Deguen.

Supplementary information

Supplementary Information

Supplementary Information (PDF 274 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deguen, R., Cardin, P. Tectonic history of the Earth’s inner core preserved in its seismic structure. Nature Geosci 2, 419–422 (2009). https://doi.org/10.1038/ngeo522

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo522

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing