Anatomy of a meltwater drainage system beneath the ancestral East Antarctic ice sheet

Abstract

Subglacial hydrology is critical to understand the behaviour of ice sheets, yet active meltwater drainage beneath contemporary ice sheets is rarely accessible to direct observation. Using geophysical and sedimentological data from the deglaciated western Ross Sea, we identify a palaeo-subglacial hydrological system active beneath an area formerly covered by the East Antarctic ice sheet. A long channel network repeatedly delivered meltwater to an ice stream grounding line and was a persistent pathway for episodic meltwater drainage events. Embayments within grounding-line landforms coincide with the location of subglacial channels, marking reduced sedimentation and restricted landform growth. Consequently, channelized drainage at the grounding line influenced the degree to which these landforms could provide stability feedbacks to the ice stream. The channel network was connected to upstream subglacial lakes in an area of geologically recent rifting and volcanism, where elevated heat flux would have produced sufficient basal melting to fill the lakes over decades to several centuries; this timescale is consistent with our estimates of the frequency of drainage events at the retreating grounding line. Based on these data, we hypothesize that ice stream dynamics in this region were sensitive to the underlying hydrological system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Western Ross Sea bathymetry and landforms.
Figure 2: Downstream hydrological segment.
Figure 3: Middle hydrological segment.
Figure 4: Subglacial lakes in upstream segment.
Figure 5: Conditions required to fill subglacial lakes.

References

  1. 1

    Peters, L. E., Anandakrishnan, S., Alley, R. B. & Smith, A. M. Extensive storage of basal meltwater in the onset region of a major West Antarctic ice stream. Geology 35, 251–254 (2007).

    Article  Google Scholar 

  2. 2

    Perol, T., Rice, J. R., Platt, J. D. & Suckale, J. Subglacial hydrology and ice stream margin locations. J. Geophys. Res. 120, 1352–1368 (2015).

    Article  Google Scholar 

  3. 3

    Alley, R. B., Blankenship, D. D., Bentley, C. R. & Rooney, S. Deformation of till beneath ice stream B, West Antarctica. Nature 322, 57–59 (1986).

    Article  Google Scholar 

  4. 4

    Engelhardt, H. & Kamb, B. Basal hydraulic system of a West Antarctic ice stream: constraints from borehole observations. J. Glaciol. 43, 207–230 (1997).

    Article  Google Scholar 

  5. 5

    Palmer, S. J. et al. Greenland subglacial lakes detected by radar. Geophys. Res. Lett. 40, 6154–6159 (2013).

    Article  Google Scholar 

  6. 6

    Howat, I. M., Porter, C., Noh, M. J., Smith, B. E. & Jeong, S. Sudden drainage of a subglacial lake beneath the Greenland Ice Sheet. Cryosphere 9, 103–108 (2015).

    Article  Google Scholar 

  7. 7

    Wright, A. & Siegert, M. A fourth inventory of Antarctic subglacial lakes. Antarct. Sci. 24, 659–664 (2012).

    Article  Google Scholar 

  8. 8

    Gray, L. et al. Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett. 32, L03501 (2005).

    Article  Google Scholar 

  9. 9

    Wingham, D. J., Siegert, M. J., Shepherd, A. & Muir, A. S. Rapid discharge connects Antarctic subglacial lakes. Nature 440, 1033–1036 (2006).

    Article  Google Scholar 

  10. 10

    Scambos, T. A., Berthier, E. & Shuman, C. A. The triggering of subglacial lake drainage during rapid glacier drawdown: Crane Glacier, Antarctic Peninsula. Ann. Glaciol. 52, 74–82 (2011).

    Article  Google Scholar 

  11. 11

    Fricker, H. A., Siegfried, M. R., Carter, S. P. & Scambos, T. A. A decade of progress in observing and modeling Antarctic subglacial water systems. Phil. Trans. R. Soc. 374, 20140294 (2016).

    Article  Google Scholar 

  12. 12

    Bell, R. E., Studinger, M., Shuman, C. A., Fahnestock, M. A. & Joughin, I. Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams. Nature 445, 904–907 (2007).

    Article  Google Scholar 

  13. 13

    Stearns, L. A., Smith, B. E. & Hamilton, G. S. Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods. Nat. Geosci. 1, 827–831 (2008).

    Article  Google Scholar 

  14. 14

    Siegfried, M. R., Fricker, H. A., Carter, S. P. & Tulaczyk, S. Episodic ice velocity fluctuations triggered by a subglacial flood in West Antarctica. Geophys. Res. Lett. 43, 2640–2648 (2016).

    Article  Google Scholar 

  15. 15

    Bartholomew, I. et al. Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat. Geosci. 3, 408–411 (2010).

    Article  Google Scholar 

  16. 16

    Cowton, T. et al. Evolution of drainage system morphology at a land-terminating Greenlandic outlet glacier. J. Geophys. Res. 118, 29–41 (2013).

    Article  Google Scholar 

  17. 17

    Andrews, L. C. et al. Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet. Nature 514, 80–83 (2014).

    Article  Google Scholar 

  18. 18

    Horgan, H. J. et al. Estuaries beneath ice sheets. Geology 41, 1159–1162 (2013).

    Article  Google Scholar 

  19. 19

    Horgan, H. J., Christianson, K., Jacobel, R. W., Anandakrishnan, S. & Alley, R. B. Sediment deposition at the modern grounding zone of Whillans Ice Stream, West Antarctica. Geophys. Res. Lett. 40, 3934–3939 (2013).

    Article  Google Scholar 

  20. 20

    Alley, R. B., Anandakrishnan, S., Dupont, T. K., Parizek, B. R. & Pollard, D. Effect of sedimentation on ice-sheet grounding-line stability. Science 315, 1838–1841 (2007).

    Article  Google Scholar 

  21. 21

    Christianson, K. et al. Basal conditions at the grounding zone of Whillans Ice Stream, West Antarctica, from ice-penetrating radar. J. Geophys. Res. 121, 1954–1983 (2016).

    Article  Google Scholar 

  22. 22

    Le Brocq, A. M. et al. Evidence from ice shelves for channelized meltwater flow beneath the Antarctic Ice Sheet. Nat. Geosci. 6, 945–948 (2013).

    Article  Google Scholar 

  23. 23

    Alley, K. E., Scambos, T. A., Siegfried, M. R. & Fricker, H. A. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nature Geosci. 9, 290–293 (2016).

    Article  Google Scholar 

  24. 24

    Marsh, O. J. et al. High basal melting forming a channel at the grounding line of Ross Ice Shelf, Antarctica. Geophys. Res. Lett. 43, 250–255 (2016).

    Article  Google Scholar 

  25. 25

    Lowe, A. L. & Anderson, J. B. Evidence for abundant subglacial meltwater beneath the paleo-ice sheet in Pine Island Bay, Antarctica. J. Glaciol. 49, 125–138 (2003).

    Article  Google Scholar 

  26. 26

    Nitsche, F. O. et al. Paleo ice flow and subglacial meltwater dynamics in Pine Island Bay, West Antarctica. Cryosphere 7, 249–262 (2013).

    Article  Google Scholar 

  27. 27

    Anderson, J. B. & Fretwell, L. O. Geomorphology of the onset area of a paleo-ice stream, Marguerite Bay, Antarctic Peninsula. Earth Surf. Process. Landf. 33, 503–512 (2008).

    Article  Google Scholar 

  28. 28

    Domack, E. et al. Subglacial morphology and glacial evolution of the Palmer deep outlet system, Antarctic Peninsula. Geomorphology 75, 125–142 (2006).

    Article  Google Scholar 

  29. 29

    Campo, J., Wellner, J. S., Lavoie, C., Domack, E. & Yoo, K. C. Glacial geomorphology of the northwestern Weddell Sea, Eastern Antarctic Peninsula Continental Shelf: shifting ice flow patterns during deglaciation. Geomorphology 280, 89–107 (2017).

    Article  Google Scholar 

  30. 30

    Wellner, J. S., Heroy, D. C. & Anderson, J. B. The death mask of the Antarctic ice sheet: comparison of glacial geomorphic features across the continental shelf. Geomorphology 75, 157–171 (2006).

    Article  Google Scholar 

  31. 31

    Greenwood, S. L., Gyllencreutz, R., Jakobsson, M. & Anderson, J. B. Ice-flow switching and East/West Antarctic Ice Sheet roles in glaciation of the Western Ross Sea. Geol. Soc. Am. Bull. 124, 1736–1749 (2012).

    Article  Google Scholar 

  32. 32

    Halberstadt, A. R. W., Simkins, L. M., Greenwood, S. L. & Anderson, J. B. Paleo-ice sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica. Cryosphere 10, 1003–1020 (2016).

    Article  Google Scholar 

  33. 33

    Batchelor, C. L. & Dowdeswell, J. A. Ice-sheet grounding-zone wedges (GZWs) on high-latitude continental margins. Mar. Geol. 363, 65–92 (2015).

    Article  Google Scholar 

  34. 34

    Bouvier, V., Johnson, M. D. & Påsse, T. Distribution, genesis and annual-origin of De Geer moraines in Sweden: insights revealed by LiDAR. GFF 137, 319–333 (2015).

    Article  Google Scholar 

  35. 35

    Anderson, J. B. Antarctic Marine Geology (Cambridge Univ. Press, 1999).

    Google Scholar 

  36. 36

    Dowdeswell, J. A., Ottesen, D., Evans, J., Cofaigh, C.Ó. & Anderson, J. B. Submarine glacial landforms and rates of ice-stream collapse. Geology 36, 819–822 (2008).

    Article  Google Scholar 

  37. 37

    McMullen, K. et al. Glacial morphology and sediment formation in the Mertz Trough, East Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 169–180 (2006).

    Article  Google Scholar 

  38. 38

    Bart, P. J. & Owolana, B. On the duration of West Antarctic Ice Sheet grounding events in Ross Sea during the Quaternary. Quat. Sci. Rev. 47, 101–115 (2012).

    Article  Google Scholar 

  39. 39

    Smith, B. E., Fricker, H. A., Joughin, I. R. & Tulaczyk, S. An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J. Glaciol. 55, 573–595 (2009).

    Article  Google Scholar 

  40. 40

    Carter, S. P. & Fricker, H. A. The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica. Ann. of Glaciol. 53, 267–280 (2012).

    Article  Google Scholar 

  41. 41

    Witus, A. E. et al. Meltwater intensive glacial retreat in polar environments and investigation of associated sediments: example from Pine Island Bay, West Antarctica. Quat. Sci. Rev. 85, 99–118 (2014).

    Article  Google Scholar 

  42. 42

    Smith, J. A. et al. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier. Nature 541, 77–80 (2017).

    Article  Google Scholar 

  43. 43

    Carter, S. P. et al. Modeling 5 years of subglacial lake activity in the MacAyeal Ice Stream (Antarctica) catchment through assimilation of ICESat laser altimetry. J. Glaciol. 57, 1098–1112 (2011).

    Article  Google Scholar 

  44. 44

    Cooper, A. K., Davey, F. J. & Behrendt, J. C. The Antarctic Continental Margin: Geology and Geophysics of the Western Ross Sea Vol. 5B927–65 (Earth Science Series, Circum-Pacific Council for Energy and Mineral Resources, 1987).

    Google Scholar 

  45. 45

    Rilling, S., Mukasa, S., Wilson, T., Lawver, L. & Hall, C. New determinations of 40Ar/39Ar isotopic ages and flow volumes for Cenozoic volcanism in the Terror Rift, Ross Sea, Antarctica. J. Geophys. Res. 114, B12207 (2009).

    Article  Google Scholar 

  46. 46

    Blackman, D. K., Von Herzen, R. P. & Lawver, L. A. The Antarctic Continental Margin: Geology and Geophysics of the Western Ross Sea Vol. 5B179–189 (Earth Science Series, Circum-Pacific Council for Energy and Mineral Resources, 1987).

    Google Scholar 

  47. 47

    Morin, R. H. et al. Heat flow and hydrologic characteristics at the AND-1B borehole, ANDRILL McMurdo Ice Shelf Project, Antarctica. Geosphere 6, 370–378 (2010).

    Article  Google Scholar 

  48. 48

    Fisher, A. T., Mankoff, K. D., Tulaczyk, S. M., Tyler, S. W. & Foley, N. High geothermal heat flux measured below the West Antarctic Ice Sheet. Sci. Adv. 1, 1500093 (2015).

    Article  Google Scholar 

  49. 49

    Arndt, J. E. et al. The international bathymetric chart of the Southern Ocean (IBCSO) Version 1.0—a new bathymetric compilation covering circum-Antarctic waters. Geophys. Res. Lett. 40, 3111–3117 (2013).

    Article  Google Scholar 

  50. 50

    Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).

    Article  Google Scholar 

  51. 51

    Jakobsson, M. et al. Geological record of ice shelf break-up and grounding line retreat, Pine Island Bay, West Antarctica. Geology 39, 691–694 (2011).

    Article  Google Scholar 

  52. 52

    O’Regan, M. et al. Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge. Paleoceanography 23, PA1S19 (2008).

    Google Scholar 

  53. 53

    Anderson, J. B., Jakobsson, M. & Party, O. S. Oden Southern Ocean 0910 OSO0910 Cruise Report (University of Stockholm, 2010).

    Google Scholar 

  54. 54

    Klages, J. P. et al. Retreat of the West Antarctic Ice Sheet from the western Amundsen Sea shelf at a pre-or early LGM stage. Quat. Sci. Rev. 91, 1–15 (2014).

    Article  Google Scholar 

  55. 55

    Anandakrishnan, S., Catania, G. A., Alley, R. B. & Horgan, H. J. Discovery of till deposition at the grounding line of Whillans Ice Stream. Science 315, 1835–1838 (2007).

    Article  Google Scholar 

  56. 56

    Walder, J. S. & Fowler, A. Channelized subglacial drainage over a deformable bed. J. Glaciol. 40, 3–15 (1994).

    Article  Google Scholar 

  57. 57

    Ng, F. S. Canals under sediment-based ice sheets. Ann. Glaciol. 30, 146–152 (2000).

    Article  Google Scholar 

  58. 58

    Haaland, S. E. Simple and explicit formulas for the friction factor in turbulent pipe flow. J. Fluids Eng. 105, 89–90 (1983).

    Article  Google Scholar 

  59. 59

    Pollard, D. & DeConto, R. M. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329–332 (2009).

    Article  Google Scholar 

  60. 60

    Pollard, D. & DeConto, R. M. Description of a hybrid ice sheet-shelf model, and application to Antarctica. Geosci. Mod. Dev. 5, 1273–1295 (2012).

    Article  Google Scholar 

  61. 61

    Pollard, D., Chang, W., Haran, M., Applegate, P. & DeConto, R. M. Large ensemble modeling of last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques. Geosci. Mod. Dev. 9, 1697–1723 (2016).

    Article  Google Scholar 

  62. 62

    Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bolling–Allerød warming. Science 325, 310–314 (2009).

    Article  Google Scholar 

  63. 63

    Budd, W. F., Jenssen, D. & Radok, U. Derived Physical Characteristics of the Antarctic Ice Sheet (Australian National Antarctic Expeditions Interim Reports. Series A, Glaciology, no. 120; University of Melbourne, 1971).

Download references

Acknowledgements

The authors thank J. Walder, S. Carter, C. Clark and T. Swanson for productive discussions; B. Demet for assistance in data collection; and A. Fonseca, S. Rezvanbehbahani and J. Aroom for assisting with analyses. This project was supported by the National Science Foundation (NSF-PLR 1246353, J.B.A.) and the Swedish Research Council (D0567301, S.L.G.).

Author information

Affiliations

Authors

Contributions

L.M.S. and J.B.A. conceived the research. L.M.S., J.B.A., S.L.G., L.O.P. and A.R.W.H. interpreted the geophysical data. L.M.S. and A.R.W.H. calculated channel flow properties. L.A.S. calculated hydraulic pressure. L.M.S. and L.O.P. analysed sediment samples. D.P. and R.M.D. provided ice sheet model data. H.M.G. completed the heat flow model. L.M.S. wrote the manuscript, with major contributions from J.B.A., S.L.G. and H.M.G. All authors read and commented on the manuscript.

Corresponding author

Correspondence to Lauren M. Simkins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 48474 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simkins, L., Anderson, J., Greenwood, S. et al. Anatomy of a meltwater drainage system beneath the ancestral East Antarctic ice sheet. Nature Geosci 10, 691–697 (2017). https://doi.org/10.1038/ngeo3012

Download citation

Further reading