Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination


The vulnerability of groundwater to contamination is closely related to its age. Groundwaters that infiltrated prior to the Holocene have been documented in many aquifers and are widely assumed to be unaffected by modern contamination. However, the global prevalence of these ‘fossil’ groundwaters and their vulnerability to modern-era pollutants remain unclear. Here we analyse groundwater carbon isotope data (12C, 13C, 14C) from 6,455 wells around the globe. We show that fossil groundwaters comprise a large share (42–85%) of total aquifer storage in the upper 1 km of the crust, and the majority of waters pumped from wells deeper than 250 m. However, half of the wells in our study that are dominated by fossil groundwater also contain detectable levels of tritium, indicating the presence of much younger, decadal-age waters and suggesting that contemporary contaminants may be able to reach deep wells that tap fossil aquifers. We conclude that water quality risk should be considered along with sustainable use when managing fossil groundwater resources.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Prevalence of fossil groundwater in global aquifers.
Figure 2: Variations of fossil and post-1953 groundwater with depth.


  1. 1

    Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–168 (2016).

    Article  Google Scholar 

  2. 2

    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).

    Article  Google Scholar 

  3. 3

    Siebert, S. et al. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).

    Article  Google Scholar 

  4. 4

    Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    Article  Google Scholar 

  5. 5

    Chen, Z., Nie, Z., Zhang, Z., Qi, J. & Nan, Y. Isotopes and sustainability of ground water resources, North China Plain. Groundwater 43, 485–493 (2005).

    Article  Google Scholar 

  6. 6

    Yamada, C. First Report on Shared Natural Resources (United Nations International Law Commission, A/CN.4/533 + Add.1, 2003);

  7. 7

    Buser, H. R. Atrazine and other s-triazine herbicides in lakes and in rain in Switzerland. Environ. Sci. Technol. 24, 1049–1058 (1990).

    Article  Google Scholar 

  8. 8

    Burgess, W. G. et al. Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic. Nat. Geosci. 3, 83–87 (2010).

    Article  Google Scholar 

  9. 9

    Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).

    Article  Google Scholar 

  10. 10

    Thatcher, L., Rubin, M. & Brown, G. F. Dating desert groundwater. Science 134, 105–106 (1961).

    Article  Google Scholar 

  11. 11

    Edmunds, W. M. & Wright, E. P. Groundwater recharge and palaeoclimate in the Sirte and Kufra basins, Libya. J. Hydrol. 40, 215–241 (1979).

    Article  Google Scholar 

  12. 12

    Phillips, F. M., Peeters, L. A., Tansey, M. K. & Davis, S. N. Paleoclimatic inferences from an isotopic investigation of groundwater in the central San Juan Basin, New Mexico. Quat. Res. 26, 179–193 (1986).

    Article  Google Scholar 

  13. 13

    Weyhenmeyer, C. E. et al. Cool glacial temperatures and changes in moisture source recorded in Oman groundwaters. Science 287, 842–845 (2000).

    Article  Google Scholar 

  14. 14

    Plummer, N. L. & Sprinkle, C. L. Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA. Hydrogeol. J. 9, 127–150 (2001).

    Article  Google Scholar 

  15. 15

    Vengosh, A., Gill, J., Davisson, M. L. & Hudson, G. B. A multi-isotope (B, Sr, O, H, and C) and age dating (3H–3He, and 14C) study of groundwater from Salinas Valley, California: hydrochemistry, dynamics, and contamination processes. Wat. Resour. Res. 38, 1008 (2002).

    Google Scholar 

  16. 16

    Brown, K. B., McIntosh, J. C., Baker, V. R. & Gosch, D. Isotopically-depleted late Pleistocene groundwater in Columbia River Basalt aquifers: evidence for recharge of glacial Lake Missoula floodwaters? Geophys. Res. Lett. 37, L21402 (2010).

    Article  Google Scholar 

  17. 17

    Morrissey, S. K., Clark, J. F., Bennett, M., Richardson, E. & Stute, M. Groundwater reorganization in the Floridan aquifer following Holocene sea-level rise. Nat. Geosci. 3, 683–687 (2010).

    Article  Google Scholar 

  18. 18

    Cartwright, I. & Weaver, T. R. Hydrogeochemistry of the Goulburn Valley region of the Murray Basin, Australia: implications for flow paths and resource vulnerability. Hydrogeol. J. 13, 752–770 (2005).

    Article  Google Scholar 

  19. 19

    Vogel, J. C. Isotope Hydrology 225–239 (International Atomic Energy Agency STI/PUB/255, 1970).

    Google Scholar 

  20. 20

    Jasechko, S. Partitioning young and old groundwater with geochemical tracers. Chem. Geol. 427, 35–42 (2016).

    Article  Google Scholar 

  21. 21

    Weissmann, G. S., Zhang, Y., LaBolle, E. M. & Fogg, G. E. Dispersion of groundwater age in an alluvial aquifer system. Wat. Resour. Res. 38, 1198 (2002).

    Google Scholar 

  22. 22

    Bethke, C. M. & andJohnson, T. M. Groundwater age and groundwater age dating. Annu. Rev. Earth Planet. Sci. 36, 121–152 (2008).

    Article  Google Scholar 

  23. 23

    Torgersen, T. et al. Isotope Methods for Dating Old Groundwater (International Atomic Energy Agency, 2013).

    Google Scholar 

  24. 24

    Jasechko, S. & Taylor, R. G. Intensive rainfall recharges tropical groundwaters. Environ. Res. Lett. 10, 124015 (2015).

    Article  Google Scholar 

  25. 25

    Jasechko, S., Kirchner, J. W., Welker, J. M. & McDonnell, J. J. Substantial proportion of global streamflow less than three months old. Nat. Geosci. 9, 126–129 (2016).

    Article  Google Scholar 

  26. 26

    Aggarwal, P. K., Araguas-Araguas, L., Choudhry, M., van Duren, M. & Froehlich, K. Lower groundwater 14C age by atmospheric CO2 uptake during sampling and analysis. Groundwater 52, 20–24 (2014).

    Article  Google Scholar 

  27. 27

    Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 5, 15–40 (2014).

    Article  Google Scholar 

  28. 28

    Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    Article  Google Scholar 

  29. 29

    Bauch, N. J., Musgrove, M., Mahler, B. J. & Paschke, S. S. The quality of our Nation’s waters—Water Quality in the Denver Basin Aquifer System, Colorado, 2003-05 U.S. Geological Survey Circular 1357 (2014).

  30. 30

    Theis, C. V. The source of water derived from wells. Civil Eng. 10, 277–280 (1940).

    Google Scholar 

  31. 31

    Russo, T. A. & Lall, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 10, 105–108 (2017).

    Article  Google Scholar 

  32. 32

    Toth, J. A theoretical analysis of groundwater flow in small drainage basins. J. Geophys. Res. 68, 4795–4812 (1963).

    Article  Google Scholar 

  33. 33

    Jiang, X. W., Wan, L., Cardenas, M. B., Ge, S. & Wang, X. S. Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying hydraulic conductivity and porosity. Geophys. Res. Lett. 37, L05403 (2010).

    Google Scholar 

  34. 34

    Zinn, B. A. & Konikow, L. F. Effects of intraborehole flow on groundwater age distribution. Hydrogeol. J. 15, 633–643 (2007).

    Article  Google Scholar 

  35. 35

    Ferguson, G. A., Betcher, R. N. & Grasby, S. E. Hydrogeology of the Winnipeg formation in Manitoba, Canada. Hydrogeol. J. 15, 573–587 (2007).

    Article  Google Scholar 

  36. 36

    Lin, L. H. et al. Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314, 479–482 (2006).

    Article  Google Scholar 

  37. 37

    Holland, G. et al. Deep fracture fluids isolated in the crust since the Precambrian. Nature 497, 367–360 (2013).

    Article  Google Scholar 

  38. 38

    Burow, K. R., Nolan, B. T., Rupert, M. G. & Dubrovsky, N. M. Nitrate in groundwater of the United States, 1991–2003. Environ. Sci. Technol. 44, 4988–4997 (2010).

    Article  Google Scholar 

  39. 39

    Graham, J. P. & Polizzotto, M. L. Pit latrines and their impacts on groundwater quality: a systematic review. Environ. Health Perspect. 121, 521–530 (2013).

    Article  Google Scholar 

  40. 40

    Sorensen, J. P. R. et al. Emerging contaminants in urban groundwater sources in Africa. Water Res. 72, 51–63 (2015).

    Google Scholar 

  41. 41

    MacDonald, A. M. et al. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nat. Geosci. 9, 762–766 (2016).

    Article  Google Scholar 

  42. 42

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    Article  Google Scholar 

  43. 43

    Hua, Q. & Barbetti, M. Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46, 1273–1298 (2004).

    Article  Google Scholar 

  44. 44

    Jasechko, S. Late-Pleistocene precipitation δ18O interpolated across the global landmass. Geochem. Geophys. Geosyst. 17, 3274–3288 (2016).

    Article  Google Scholar 

  45. 45

    New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).

    Article  Google Scholar 

Download references


S.J. was supported by an NSERC Discovery Grant. R.G.T. acknowledges support of the NERC-ESRC-DFID UPGro grant NE/M008932/1.

Author information




S.J. and J.W.K. analysed the compiled groundwater isotope data and wrote initial drafts of the manuscript. S.J. and D.P. analysed the compiled groundwater well construction data. All authors discussed results and edited the manuscript.

Corresponding author

Correspondence to Scott Jasechko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 12030 kb)

Supplementary Information

Supplementary Information (XLS 228 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jasechko, S., Perrone, D., Befus, K. et al. Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. Nature Geosci 10, 425–429 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing