Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Silicate mineralogy at the surface of Mercury


NASA’s MESSENGER spacecraft has revealed geochemical diversity across Mercury’s volcanic crust. Near-infrared to ultraviolet spectra and images have provided evidence for the Fe2+-poor nature of silicate minerals, magnesium sulfide minerals in hollows and a darkening component attributed to graphite, but existing spectral data is insufficient to build a mineralogical map for the planet. Here we investigate the mineralogical variability of silicates in Mercury’s crust using crystallization experiments on magmas with compositions and under reducing conditions expected for Mercury. We find a common crystallization sequence consisting of olivine, plagioclase, pyroxenes and tridymite for all magmas tested. Depending on the cooling rate, we suggest that lavas on Mercury are either fully crystallized or made of a glassy matrix with phenocrysts. Combining the experimental results with geochemical mapping, we can identify several mineralogical provinces: the Northern Volcanic Plains and Smooth Plains, dominated by plagioclase, the High-Mg province, strongly dominated by forsterite, and the Intermediate Plains, comprised of forsterite, plagioclase and enstatite. This implies a temporal evolution of the mineralogy from the oldest lavas, dominated by mafic minerals, to the youngest lavas, dominated by plagioclase, consistent with progressive shallowing and decreasing degree of mantle melting over time.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Evolution of mineral modes (wt%) in experiments on the low-Mg NVP, SP and HMg compositions.
Figure 2: Representation of the chemical compositions of experimental silicate melts in phase diagrams.
Figure 3: Maps of chemical composition and mineralogy of crystal-bearing glassy surfaces in the northern hemisphere of Mercury.
Figure 4: Mineralogy and mineral modes for a fully crystalline volcanic crust in the northern hemisphere of Mercury.


  1. 1

    Binzel, R. P. & Xu, S. Chips off of asteroid 4 Vesta: evidence for the parent body of basaltic achondrite meteorites. Science 260, 186–191 (1993).

    Article  Google Scholar 

  2. 2

    Mustard, J. et al. Olivine and pyroxene diversity in the crust of Mars. Science 307, 1594–1597 (2005).

    Article  Google Scholar 

  3. 3

    Papike, J., Karner, J., Shearer, C. & Burger, P. Silicate mineralogy of martian meteorites. Geochim. Cosmochim. Acta 73, 7443–7485 (2009).

    Article  Google Scholar 

  4. 4

    Smith, J. V. et al. Petrologic history of the Moon inferred from petrography, mineralogy and petrogenesis of Apollo 11 rocks. in Proc. Apollo 11 Lunar Sci. Conf. Vol. 1 (ed. Levinson, A. A.) 897–925 (Pergamon Press, 1970).

    Google Scholar 

  5. 5

    Ohtake, M. et al. The global distribution of pure anorthosite on the Moon. Nature 461, 236–240 (2009).

    Article  Google Scholar 

  6. 6

    Bibring, J. P. et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006).

    Article  Google Scholar 

  7. 7

    Strom, R. G., Trask, N. J. & Guest, J. E. Tectonism and volcanism on Mercury. J. Geophys. Res. 80, 2478–2507 (1975).

    Article  Google Scholar 

  8. 8

    Fassett, C. I., Kadish, S. J., Head, J. W., Solomon, S. C. & Strom, R. G. The global population of large craters on Mercury and comparison with the Moon. Geophys. Res. Lett. 38, L10202 (2011).

    Google Scholar 

  9. 9

    Denevi, B. W. et al. The evolution of Mercury’s crust: a global perspective from MESSENGER. Science 324, 613–618 (2009).

    Google Scholar 

  10. 10

    Head, J. W. et al. Volcanism on Mercury: evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains. Earth Planet. Sci. Lett. 285, 227–242 (2009).

    Article  Google Scholar 

  11. 11

    Head, J. W. et al. Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science 333, 1853–1856 (2011).

    Article  Google Scholar 

  12. 12

    Marchi, S. et al. Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature 499, 59–61 (2013).

    Article  Google Scholar 

  13. 13

    Charlier, B., Grove, T. L. & Zuber, M. T. Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth Planet. Sci. Lett. 363, 50–60 (2013).

    Article  Google Scholar 

  14. 14

    Namur, O. et al. Melting processes and mantle sources of lavas on Mercury. Earth Planet. Sci. Lett. 439, 117–128 (2016).

    Article  Google Scholar 

  15. 15

    Murchie, S. L. et al. Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: evidence for the origins of plains units and low-reflectance material. Icarus 254, 287–305 (2015).

    Article  Google Scholar 

  16. 16

    Peplowski, P. N. et al. Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nat. Geosci. 9, 273–276 (2016).

    Article  Google Scholar 

  17. 17

    Vilas, F. et al. Mineralogical indicators of Mercury’s hollows composition in MESSENGER color observations. Geophys. Res. Lett. 43, 1450–1456 (2016).

    Article  Google Scholar 

  18. 18

    Neumann, G. A. et al. Bright and dark polar deposits on Mercury: evidence for surface volatiles. Science 339, 296–300 (2013).

    Article  Google Scholar 

  19. 19

    Izenberg, N. R. et al. The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER. Icarus 228, 364–374 (2014).

    Article  Google Scholar 

  20. 20

    Nittler, L. R. et al. The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science 333, 1847–1850 (2011).

    Article  Google Scholar 

  21. 21

    Weider, S. Z. et al. Evidence for geochemical terranes on Mercury: global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth Planet. Sci. Lett. 416, 109–120 (2015).

    Article  Google Scholar 

  22. 22

    Peplowski, P. N. et al. Enhanced sodium abundance in Mercury’s north polar region revealed by the MESSENGER Gamma-ray spectrometer. Icarus 228, 86–95 (2014).

    Article  Google Scholar 

  23. 23

    Peplowski, P. N. et al. Geochemical terranes of Mercury’s northern hemisphere as revealed by MESSENGER neutron measurements. Icarus 253, 346–363 (2015).

    Article  Google Scholar 

  24. 24

    Nittler, L. R. et al. Global major-element maps of Mercury updated from four years of MESSENGER X-Ray observations. Proc. Lunar Planet. Sci. Conf. Vol. XLVII, 1237 (2016).

    Google Scholar 

  25. 25

    Namur, O., Charlier, B., Holtz, F., Cartier, C. & McCammon, C. Sulfur solubility in reduced mafic silicate melts: implications for the speciation and distribution of sulfur on Mercury. Earth Planet. Sci. Lett. 448, 102–114 (2016).

    Article  Google Scholar 

  26. 26

    Vander Kaaden, K. E. & McCubbin, F. M. The origin of boninites on Mercury: an experimental study of the northern volcanic plains lavas. Geochim. Cosmochim. Acta 173, 246–263 (2016).

    Article  Google Scholar 

  27. 27

    McCoy, T. J., Dickinson, T. L. & Lofgren, G. E. Partial melting of the Indarch (EH4) meteorite: a textural, chemical, and phase relations view of melting and melt migration. Meteorol. Planet. Sci. 34, 735–746 (1999).

    Article  Google Scholar 

  28. 28

    Kerber, L. et al. Explosive volcanic eruptions on Mercury: eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet. Sci. Lett. 285, 263–271 (2009).

    Article  Google Scholar 

  29. 29

    Goudge, T. A. et al. Global inventory and characterization of pyroclastic deposits on Mercury: new insights into pyroclastic activity from MESSENGER orbital data. J. Geophys. Res. 119, 635–658 (2014).

    Article  Google Scholar 

  30. 30

    Thomas, R. J., Rothery, D. A., Conway, S. J. & Anand, M. Long-lived explosive volcanism on Mercury. Geophys. Res. Lett. 41, 6084–6092 (2014).

    Article  Google Scholar 

  31. 31

    Byrne, P. K. et al. An assemblage of lava flow features on Mercury. J. Geophys. Res. 118, 1303–1322 (2013).

    Article  Google Scholar 

  32. 32

    Hurwitz, D. M. et al. Investigating the origin of candidate lava channels on Mercury with MESSENGER data: theory and observations. J. Geophys. Res. 118, 471–486 (2013).

    Article  Google Scholar 

  33. 33

    Sehlke, A. & Whittington, A. G. Rheology of lava flows on Mercury: an analog experimental study. J. Geophys. Res. 120, 1924–1955 (2015).

    Article  Google Scholar 

  34. 34

    Vasavada, A. R., Paige, D. A. & Wood, S. E. Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus 141, 179–193 (1999).

    Article  Google Scholar 

  35. 35

    Grove, T. L. & Krawczynski, M. J. Lunar mare volcanism: where did the magmas come from? Elements 5, 29–34 (2009).

    Article  Google Scholar 

  36. 36

    Walker, D., Kirkpatrick, R., Longhi, J. & Hays, J. Crystallization history of lunar picritic basalt sample 12002: phase-equilibria and cooling-rate studies. Geol. Soc. Am. Bull. 87, 646–656 (1976).

    Article  Google Scholar 

  37. 37

    Chevrel, M. et al. Lava flow rheology: a comparison of morphological and petrological methods. Earth Planet. Sci. Lett. 384, 109–120 (2013).

    Article  Google Scholar 

  38. 38

    Gregg, T. K. P. & Fink, J. H. Quantification of extraterrestrial lava flow effusion rates through laboratory simulation. J. Geophys. Res. 101, 16891–16900 (1996).

    Article  Google Scholar 

  39. 39

    Philpotts, A. R. & Dickson, L. D. The formation of plagioclase chains during convective transfer in basaltic magma. Nature 406, 59–61 (2000).

    Article  Google Scholar 

  40. 40

    Namur, O., Charlier, B., Toplis, M. J. & Vander Auwera, J. Prediction of plagioclase-melt equilibria in anhydrous silicate melts at 1-atm. Contrib. Mineral. Petrol. 163, 133–150 (2012).

    Article  Google Scholar 

  41. 41

    Padovan, S., Wieczorek, M. A., Margot, J.-L., Tosi, N. & Solomon, S. C. Thickness of the crust of Mercury from geoid-to-topography ratios. Geophys. Res. Lett. 42, 1029–1038 (2015).

    Article  Google Scholar 

  42. 42

    James, P. B., Zuber, M. T., Phillips, R. J. & Solomon, S. C. Support of long-wavelength topography on Mercury inferred from MESSENGER measurements of gravity and topography. J. Geophys. Res. 120, 287–310 (2015).

    Article  Google Scholar 

  43. 43

    Pieters, C. M., Tompkins, S., Head, J. & Hess, P. Mineralogy of the mafic anomaly in the South Pole-Aitken Basin: implications for excavation of the lunar mantle. Geophys. Res. Lett. 24, 1903–1906 (1997).

    Article  Google Scholar 

  44. 44

    Byrne, P. K. et al. Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga. Geophys. Res. Lett. 43, 7408–7416 (2016).

    Article  Google Scholar 

  45. 45

    Denevi, B. W. et al. The distribution and origin of smooth plains on Mercury. J. Geophys. Res. 118, 891–907 (2013).

    Article  Google Scholar 

  46. 46

    Holzheid, A., Palme, H. & Chakraborty, S. The activities of NiO, CoO and FeO in silicate melts. Chem. Geol. 139, 21–38 (1997).

    Article  Google Scholar 

  47. 47

    O’Neill, H. S. & Mavrogenes, J. A. The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400 °C and 1 bar. J. Petrol. 43, 1049–1087 (2002).

    Article  Google Scholar 

  48. 48

    Ma, Z. Thermodynamic description for concentrated metallic solutions using interaction parameters. Metall. Mater. Trans. B 32, 87–103 (2001).

    Article  Google Scholar 

  49. 49

    Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005).

    Article  Google Scholar 

  50. 50

    Corgne, A., Keshav, S., Wood, B. J., McDonough, W. F. & Fei, Y. Metal-silicate partitioning and constraints on core composition and oxygen fugacity during Earth accretion. Geochim. Cosmochim. Acta 72, 574–589 (2008).

    Article  Google Scholar 

  51. 51

    Bouchard, D. & Bale, C. W. Simultaneous optimization of thermochemical data for liquid iron alloys containing C, N, Ti, Si, Mn, S, and P. Metall. Mater. Trans. B 26, 467–484 (1995).

    Article  Google Scholar 

  52. 52

    Tuff, J., Wood, B. J. & Wade, J. The effect of Si on metal-silicate partitioning of siderophile elements and implications for the conditions of core formation. Geochim. Cosmochim. Acta 75, 673–690 (2011).

    Article  Google Scholar 

  53. 53

    Cartier, C. et al. Experimental study of trace element partitioning between enstatite and melt in enstatite chondrites at low oxygen fugacities and 5 GPa. Geochim. Cosmochim. Acta 130, 167–187 (2014).

    Article  Google Scholar 

  54. 54

    Robie, R. A. & Hemingway, B. S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar pressure and at higher temperatures. USGS Bull. 2131, 1–461 (1995).

    Google Scholar 

  55. 55

    Huebner, J. S. in Research Techniques for High Pressure and High Temperature (ed. Ulmer, G. C.) 123–177 (Springer, 1971).

    Book  Google Scholar 

  56. 56

    Myers, J. T. & Eugster, H. P. The system Fe–Si–O: oxygen buffer calibrations to 1,500 K. Contrib. Mineral. Petrol. 82, 75–90 (1983).

    Article  Google Scholar 

  57. 57

    Grove, T. L., Kinzler, R. J. & Bryan, W. B. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds Phipps Morgan, J., Blackman, D. & Sinton, J.) 281–310 (American Geophysical Union, 1992).

    Google Scholar 

Download references


This research was carried out with financial support from a Marie Curie Intra-European Fellowship (SULFURONMERCURY-327046) to O.N. and the Belspo BRAIN-be program (BR/143/A2/COME-IN). O.N. also acknowledges support from the Belgian Fund for Scientific Research—FNRS for a position of Postdoctoral Researcher (Grant 1.B.341.16). B.C. is a Research Associate of the Belgian Fund for Scientific Research—FNRS. L. Nittler is thanked for providing the most recent XRS maps of Mercury. B. Mandler and V. Honour are thanked for careful editing of the manuscript.

Author information




O.N. and B.C. designed the project. O.N. conducted the experiments and modelling. O.N. and B.C. interpreted the results and prepared the manuscript.

Corresponding author

Correspondence to Olivier Namur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 12315 kb)

Supplementary Information

Supplementary Information (XLSX 11 kb)

Supplementary Information

Supplementary Information (XLSX 78 kb)

Supplementary Information

Supplementary Information (TXT 12925 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Namur, O., Charlier, B. Silicate mineralogy at the surface of Mercury. Nature Geosci 10, 9–13 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing