Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure

Abstract

The processes that lead to the fourfold variation in arc-averaged compositions of mafic arc lavas remain controversial. Control by the mantle-wedge thermal structure is supported by chemical correlations with the thickness of the underlying arc crust1,2,3, which affects the thermal state of the wedge. Control by down-going slab temperature is supported by correlations with the slab thermal parameter3,4,5,6,7. The Chilean Southern Volcanic Zone provides a test of these hypotheses. Here we use chemical data to demonstrate that the Southern Volcanic Zone and global arc averages define the same chemical trends, both among elements and between elements and crustal thickness. But in contrast to the global arc system, the Southern Volcanic Zone is built on crust of variable thickness with a constant slab thermal parameter. This natural experiment, along with a set of numerical simulations, shows that global arc compositional variability is dominated by different extents of melting that are controlled by the thermal structure of the mantle wedge. Slab temperatures play a subordinate role. Variations in the subducting slab’s fluid flux and sediment compositions, as well as mantle-wedge heterogeneities, produce second-order effects that are manifested as distinctive trace element and isotopic signatures; these can be more clearly elucidated once the importance of wedge thermal structure is recognized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variation of Moho depth and the slab ‘thermal parameter’ (Φ) along the SVZ between 33° and 43° S.
Figure 2: Chemical systematics of SVZ volcano and global arc averages.
Figure 3: Results of 2D numerical simulation.

Similar content being viewed by others

References

  1. Plank, T. & Langmuir, C. H. An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet. Sci. Lett. 90, 349–370 (1988).

    Article  Google Scholar 

  2. Turner, S. J. & Langmuir, C. H. The global chemical systematics of arc front stratovolcanoes: evaluating the role of crustal processes. Earth Planet. Sci. Lett. 422, 182–193 (2015).

    Article  Google Scholar 

  3. Turner, S. J. & Langmuir, C. H. What processes control the chemical compositions of arc front stratovolcanoes? Geochem. Geophys. Geosyst. 16, 1865–1893 (2015).

    Article  Google Scholar 

  4. Cooper, L. B. et al. Global variations in H2O/Ce: 1. Slab surface temperatures beneath volcanic arcs. Geochem. Geophys. Geosyst. 13, Q03024 (2012).

    Article  Google Scholar 

  5. Plank, T., Cooper, L. B. & Manning, C. E. Emerging geothermometers for estimating slab surface temperatures. Nat. Geosci. 2, 611–615 (2009).

    Article  Google Scholar 

  6. Ruscitto, D. M., Wallace, P. J., Cooper, L. B. & Plank, T. Global variations in H2O/Ce: 2. Relationships to arc magma geochemistry and volatile fluxes. Geochem. Geophys. Geosyst. 13, Q03025 (2012).

    Article  Google Scholar 

  7. Gazel, E. et al. Continental crust generated in oceanic arcs. Nat. Geosci. 8, 321–327 (2015).

    Article  Google Scholar 

  8. Plank, T. & Langmuir, C. H. Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 362, 739–743 (1993).

    Article  Google Scholar 

  9. Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res. 102, 14991–15019 (1997).

    Article  Google Scholar 

  10. McCulloch, M. T. & Gamble, J. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett. 102, 358–374 (1991).

    Article  Google Scholar 

  11. Kirby, S. H., Durham, W. B. & Stern, L. A. Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science 252, 216–225 (1991).

    Article  Google Scholar 

  12. Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183, 73–90 (2010).

    Article  Google Scholar 

  13. Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H. & Wallace, P. J. Why do mafic arc magmas contain 4 wt% water on average? Earth Planet. Sci. Lett. 364, 168–179 (2013).

    Article  Google Scholar 

  14. England, P., Engdahl, R. & Thatcher, W. Systematic variation in the depths of slabs beneath arc volcanoes. Geophys. J. Int. 156, 377–408 (2004).

    Article  Google Scholar 

  15. Syracuse, E. M. & Abers, G. A. Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem. Geophys. Geosyst. 7, Q05017 (2006).

    Article  Google Scholar 

  16. Hermann, J. & Rubatto, D. Accessory phase control on the trace element signature of sediment melts in subduction zones. Chem. Geol. 265, 512–526 (2009).

    Article  Google Scholar 

  17. van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. 116, B01401 (2011).

    Article  Google Scholar 

  18. Tassara, A. & Echaurren, A. Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models. Geophys. J. Int. 189, 161–168 (2012).

    Article  Google Scholar 

  19. Hildreth, W. & Moorbath, S. Crustal contributions to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol. 98, 455–489 (1988).

    Article  Google Scholar 

  20. Tormey, D. R., Hickey-Vargas, R., Frey, F. A. & López-Escobar, L. Recent lavas from the Andean volcanic front (33 to 42° S); interpretations of along-arc compositional variations. Geol. Soc. Am. Spec. Pap. 265, 57–78 (1991).

    Google Scholar 

  21. Hickey, R. L., Frey, F. A., Gerlach, D. C. & Lopez-Escobar, L. Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34–41° S): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust. J. Geophys. Res. 91, 5963–5983 (1986).

    Article  Google Scholar 

  22. Jacques, G. et al. Geochemical variations in the Central Southern Volcanic Zone, Chile (38–43° S): the role of fluids in generating arc magmas. Chem. Geol. 371, 27–45 (2014).

    Article  Google Scholar 

  23. van Keken, P. E. et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Inter. 171, 187–197 (2008).

    Article  Google Scholar 

  24. England, P. C. & Katz, R. F. Melting above the anhydrous solidus controls the location of volcanic arcs. Nature 467, 700–703 (2010).

    Article  Google Scholar 

  25. Lallemand, S., Heuret, A. & Boutelier, D. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem. Geophys. Geosyst. 6, Q09005 (2005).

    Article  Google Scholar 

  26. Jarrard, R. D. Relations among subduction parameters. Rev. Geophys. 24, 217–284 (1986).

    Article  Google Scholar 

  27. Yogodzinski, G. M. et al. The role of subducted basalt in the source of island arc magmas: evidence from seafloor lavas of the western Aleutians. J. Petrol. 56, 441–492 (2015).

    Article  Google Scholar 

  28. Wilson, C. R., Spiegelman, M., van Keken, P. E. & Hacker, B. R. Fluid flow in subduction zones: the role of solid rheology and compaction pressure. Earth Planet. Sci. Lett. 401, 261–274 (2014).

    Article  Google Scholar 

  29. Class, C., Miller, D. M., Goldstein, S. L. & Langmuir, C. H. Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochem. Geophys. Geosyst. 1, 1004 (2000).

    Article  Google Scholar 

  30. Plank, T. & Langmuir, C. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998).

    Article  Google Scholar 

  31. Pfeifer, H.-R., Lavanchy, J.-C. & Serneels, V. Bulk chemical analysis of geological and industrial materials by X-ray fluorescence, recent developments and application to materials rich in iron oxide. J. Trace Microprobe Tech. 9, 127–147 (1991).

    Google Scholar 

  32. Turner, S. J., Izbekov, P. & Langmuir, C. The magma plumbing system of Bezymianny Volcano: insights from a 54 year time series of trace element whole-rock geochemistry and amphibole compositions. J. Volcanol. Geotherm. Res. 263, 108–121 (2013).

    Article  Google Scholar 

  33. Reubi, O. et al. Assimilation of the plutonic roots of the Andean arc controls variations in U-series disequilibria at Volcan Llaima, Chile. Earth Planet. Sci. Lett. 303, 37–47 (2011).

    Article  Google Scholar 

  34. Dungan, M. A., Wulff, A. & Thompson, R. Eruptive stratigraphy of the Tatara–San Pedro complex, 36 S, Southern Volcanic Zone, Chilean Andes: reconstruction method and implications for magma evolution at long-lived arc volcanic centers. J. Petrol. 42, 555–626 (2001).

    Article  Google Scholar 

  35. Jicha, B. R. et al. Rapid magma ascent and generation of 230Th excesses in the lower crust at Puyehue–Cordón Caulle, Southern Volcanic Zone, Chile. Earth Planet. Sci. Lett. 255, 229–242 (2007).

    Article  Google Scholar 

  36. Tagiri, M., Moreno, H., López-Escobar, L. & Notsu, K. Two magma types of the high-alumina basalt series of Osorno Volcano, Southern Andes (41° 06′ S)-Plagioclase dilution effect, Ganko. J. Miner. Petrol. Econ. Geol. 88, 359–371 (1993).

    Article  Google Scholar 

  37. Tormey, D. R., Frey, F. A. & Lopez-Escobar, L. Geochemistry of the active Azufre–Planchon–Peteroa Volcanic Complex, Chile (35° 15′ S): evidence for multiple sources and processes in a Cordilleran arc magmatic system. J. Petrol. 36, 265–298 (1995).

    Article  Google Scholar 

  38. Gerlach, D. C., Frey, F. A., Moreno-Roa, H. & Lopez-Escobar, L. Recent volcanism in the Puyehue—Cordon Caulle Region, Southern Andes, Chile (40 5° S): petrogenesis of evolved lavas. J. Petrol. 29, 333–382 (1988).

    Article  Google Scholar 

  39. Rodriguez, C., Sellé, D., Dungan, M., Langmuir, C. & Leeman, W. Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longavi Volcano (36.2° S; Andean Southern Volcanic Zone, Central Chile). J. Petrol. 48, 2033–2061 (2007).

    Article  Google Scholar 

  40. Weill, D. F. & Drake, M. J. Europium anomaly in plagioclase feldspar: experimental results and semiquantitative model. Science 180, 1059–1060 (1973).

    Article  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the invaluable assistance and guidance of D. Sellés and Servicio Nacional de Geología y Minería of Chile for assisting with our field campaigns. R. Hickey-Vargas provided us with many of the samples used in this study as well. Z. Chen carried out some of the ICPMS analyses and provided analytical assistance for the rest. L. Cooper provided discussions and scientific input during our joint sampling expeditions and in the years following, and also took on a large amount of the sample preparation. A helpful review by G. Yogodzinski significantly improved this manuscript. This work was supported by NSF grant EAR-0948511, NERC grant NE/M000427/1, and ERC grant 279925.

Author information

Authors and Affiliations

Authors

Contributions

C.H.L. conceived the SVZ as a natural experiment and obtained the funding. S.J.T., S.E., C.H.L. and M.A.D. collected samples. S.J.T. and S.E. acquired the data. S.J.T., C.H.L. and M.A.D. interpreted the chemical data. S.J.T. carried out the geochemical modelling. R.F.K. wrote the numerical code and guided S.J.T. in its application. S.J.T. wrote the manuscript with assistance from C.H.L.; M.A.D. and R.F.K. helped develop and revise the manuscript.

Corresponding author

Correspondence to Stephen J. Turner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 424 kb)

Supplementary Information

Supplementary Information (XLSX 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, S., Langmuir, C., Katz, R. et al. Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure. Nature Geosci 9, 772–776 (2016). https://doi.org/10.1038/ngeo2788

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2788

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing