Melting at the base of the Greenland ice sheet explained by Iceland hotspot history

Abstract

Ice-penetrating radar1,2,3 and ice core drilling4 have shown that large parts of the north-central Greenland ice sheet are melting from below. It has been argued that basal ice melt is due to the anomalously high geothermal flux1,4 that has also influenced the development of the longest ice stream in Greenland1. Here we estimate the geothermal flux beneath the Greenland ice sheet and identify a 1,200-km-long and 400-km-wide geothermal anomaly beneath the thick ice cover. We suggest that this anomaly explains the observed melting of the ice sheet’s base, which drives the vigorous subglacial hydrology3 and controls the position of the head of the enigmatic 750-km-long northeastern Greenland ice stream5. Our combined analysis of independent seismic, gravity and tectonic data6,7,8,9 implies that the geothermal anomaly, which crosses Greenland from west to east, was formed by Greenland’s passage over the Iceland mantle plume between roughly 80 and 35 million years ago. We conclude that the complexity of the present-day subglacial hydrology and dynamic features of the north-central Greenland ice sheet originated in tectonic events that pre-date the onset of glaciation in Greenland by many tens of millions of years.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Predicted GF at 5 km below the bedrock surface.
Figure 2: Geophysical data indicating lithosphere anomalies beneath Greenland.
Figure 3: Predicted basal thermal state of the present-day GIS.

References

  1. 1

    Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J. & Gogineni, P. High geothermal heat flow, basal melt, and the origin of rapid ice flow in central Greenland. Science 294, 2338–2342 (2001).

    Article  Google Scholar 

  2. 2

    Oswald, G. K. A. & Gogineni, S. P. Mapping basal melt under the northern Greenland ice sheet. IEEE Trans. Geosci. Remote Sensing 50, 585–592 (2012).

    Article  Google Scholar 

  3. 3

    Bell, R. E. et al. Deformation, warming and softening of Greenland’s ice by refreezing meltwater. Nature Geosci. 7, 497–502 (2014).

    Article  Google Scholar 

  4. 4

    Grinsted, A. & Dahl-Jensen, D. A Monte Carlo-tuned model of the flow in the NorthGRIP area. Ann. Glaciol. 35, 527–530 (2002).

    Article  Google Scholar 

  5. 5

    Joughin, I., Smith, B. E., Howat, I. M., Scambos, T. & Moon, T. Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol. 56, 415–430 (2010).

    Article  Google Scholar 

  6. 6

    Rickers, F., Fichtner, A. & Trampert, J. The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion. Earth Planet. Sci. Lett. 367, 39–51 (2013).

    Article  Google Scholar 

  7. 7

    Jakovlev, A. V., Bushenkova, N. A., Koulakov, I. Y. & Dobretsov, N. L. Structure of the upper mantle in the circum-Arctic region from regional seismic tomography. Russ. Geol. Geophys. 53, 963–971 (2012).

    Article  Google Scholar 

  8. 8

    Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. Absolute plate motions in a reference frame defined by moving hotspots in the Pacific, Atlantic and Indian oceans. J. Geophys. Res. 117, B09101 (2012).

    Article  Google Scholar 

  9. 9

    O’Neill, C., Müller, R. D. & Steinberger, B. On the uncertainties in hotspot reconstructions, and the significance of moving hotspot reference frames. Geochem. Geophys. Geosyst. 6, Q04003 (2005).

    Google Scholar 

  10. 10

    Schroeder, D. M., Blankenship, D. D., Young, D. A. & Quartini, E. Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic ice sheet. Proc. Natl Acad. Sci. USA 111, 9070–9072 (2014).

    Article  Google Scholar 

  11. 11

    Kamb, B. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res. 92, 9083–9100 (1987).

    Article  Google Scholar 

  12. 12

    Llubes, M., Lanseau, C. & Remy, F. Relations between basal condition, subglacial hydrological networks and geothermal flux in Antarctica. Earth Planet. Sci. Lett. 241, 655–662 (2006).

    Article  Google Scholar 

  13. 13

    Sørensen, L. S. et al. Mass balance of the Greenland ice sheet (2003–2008) from ICESat data—the impact of interpolation, sampling and firn density. Cryosphere 5, 173–186 (2011).

    Article  Google Scholar 

  14. 14

    Parizek, B., Alley, R. B. & Hulbe, C. L. Subglacial thermal balance permits ongoing grounding line retreat along the Siple Coast of West Antarctica. Ann. Glaciol. 36, 251–256 (2003).

    Article  Google Scholar 

  15. 15

    Artemieva, I. M. Global 1° × 1° thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416, 245–277 (2006).

    Article  Google Scholar 

  16. 16

    Petrunin, A. et al. Heat flux variations beneath central Greenland’s ice due to anomalously thin lithosphere. Nature Geosci. 6, 746–750 (2013).

    Article  Google Scholar 

  17. 17

    Fox Maule, C., Purucker, M. E. & Olsen, N. Inferring Magnetic Crustal Thickness and Geothermal Heat Flux from Crustal Magnetic Field Models (Danish Meteorological Institute, 2009); http://www.dmi.dk/fileadmin/Rapporter/DKC/dkc09-09.pdf

    Google Scholar 

  18. 18

    Kumar, P. et al. The lithosphere-asthenosphere boundary in the North-West Atlantic region. Earth Planet. Sci. Lett. 236, 249–257 (2005).

    Article  Google Scholar 

  19. 19

    Johnsen, S. J. et al. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat. Sci. 16, 299–307 (2001).

    Article  Google Scholar 

  20. 20

    Bamber, J. L. et al. A new bed elevation dataset for Greenland. Cryosphere 7, 499–510 (2013).

    Article  Google Scholar 

  21. 21

    Karato, S. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett. 20, 1623–1626 (1993).

    Article  Google Scholar 

  22. 22

    Storey, M., Duncan, R. A. & Tegner, C. Timing and duration of volcanism in the North Atlantic Igneous Province: implications for geodynamics and links to the Iceland hotspot. Chem. Geol. 241, 264–281 (2007).

    Article  Google Scholar 

  23. 23

    Morgan, W. J. Deep mantle convection plumes and plate motions. Bull. Am. Assoc. Petrol. Geol. 56, 203–213 (1972).

    Google Scholar 

  24. 24

    Sobolev, S. V. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011).

    Article  Google Scholar 

  25. 25

    Kaban, M. K., Petrunin, A. G., Schmeling, H. & Shahraki, M. Effect of decoupling of lithospheric plates on the observed geoid. Surv. Geophys. 35, 1361–1373 (2014).

    Article  Google Scholar 

  26. 26

    Weis, D., Demaiffe, D., Souchez, R., Gow, A. J. & Meese, D. A. Ice sheet development in central Greenland: implications from the Nd, Sr and Pb isotopic compositions of basal material. Earth Planet. Sci. Lett. 150, 161–167 (1997).

    Article  Google Scholar 

  27. 27

    Koptev, A., Calais, E., Burov, E., Leroy, S. & Gerya, T. Dual continental rift systems generated by plume–lithosphere interaction. Nature Geosci. 8, 388–392 (2015).

    Article  Google Scholar 

  28. 28

    Bamber, J. L., Siegert, M. J., Griggs, J. A., Marshall, S. J. & Spada, G. Paleofluvial mega-canyon beneath the central Greenland ice sheet. Science 341, 997–999 (2013).

    Article  Google Scholar 

  29. 29

    Kamb, B. in The West Antarctic Ice Sheet: Behavior and Environment (eds Alley, R. B. & Bindschadler, R. A.) 157–199 (Antarctic Research Series 77, American Geophysical Union, 2001).

    Google Scholar 

  30. 30

    Henriksen, N., Higgins, A. K., Kalsbeek, F. & Pulvertaft, T. C. R. Greenland from Archaean to Quaternary: geological map of Greenland, 1:2 500 000. Geol. Greenland Surv. Bull. 185, 1–93 (2000).

    Google Scholar 

  31. 31

    Greve, R. A continuum-mechanical formulation for shallow polythermal ice sheets. Phil. Trans. R. Soc. Lond. A 355, 921–974 (1997).

    Article  Google Scholar 

  32. 32

    Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 282, 104–115 (2003).

    Article  Google Scholar 

  33. 33

    Janssens, I. & Huybrechts, P. The treatment of meltwater retention in mass-balance parameterisations of the Greenland ice sheet. Ann. Glaciol. 31, 133–140 (2000).

    Article  Google Scholar 

  34. 34

    Hindmarsh, R. C. A. & Le Meur, E. Dynamical processes involved in the retreat of marine ice sheets. J. Glaciol. 47, 271–282 (2001).

    Article  Google Scholar 

  35. 35

    Petrunin, A. G. & Sobolev, S. V. Three-dimensional numerical models of the evolution of pull-apart basins. Phys. Earth Planet. Inter. 171, 387–399 (2008).

    Article  Google Scholar 

  36. 36

    Petrunin, A. G. & Sobolev, S. V. What controls thickness of sediments and lithospheric deformation at a pull-apart basin? Geology 34, 389–392 (2006).

    Article  Google Scholar 

  37. 37

    Förster, H.-J., Förster, A., Oberhänsli, R. & Stromeyer, D. Lithospheric composition and thermal structure of the Arabian Shield in Jordan. Tectonophysics 481, 29–37 (2010).

    Article  Google Scholar 

  38. 38

    Laske, G., Masters, G., Ma, Z. & Pasyanos, M. Update on CRUST1.0 - A 1-degree global model of Earth’s crust. Geophys. Res. Abstracts 15, EGU2013-2658 (2013).

    Google Scholar 

  39. 39

    Kumar, P., Kind, R., Priestley, K. & Dahl-Jensen, T. Crustal structure of Iceland and Greenland from receiver function studies. J. Geophys. Res. 112, B03301 (2007).

    Google Scholar 

  40. 40

    Braun, A., Kim, H., Csatho, B. & Vonfrese, R. Gravity-inferred crustal thickness of Greenland. Earth Planet. Sci. Lett. 262, 138–158 (2007).

    Article  Google Scholar 

  41. 41

    Mareschal, J.-C. & Jaupart, C. Radiogenic heat production, thermal regime and evolution of continental crust. Tectonophysics 609, 524–534 (2013).

    Article  Google Scholar 

  42. 42

    Harper, J. et al. The Greenland Analogue Project Report (Posiva, 2012); http://www.posiva.fi/files/2826/WR_2012-16web.pdf

  43. 43

    Rogozhina, I. et al. Effects of uncertainties in the geothermal heat flux distribution on the Greenland ice sheet: an assessment of existing heat flow models. J. Geophys. Res. 117, F02025 (2012).

    Article  Google Scholar 

  44. 44

    Brouwers, E. M., Jørgensen, N. O. & Cronin, T. M. Climatic significance of the ostracode fauna from the Pliocene Kap København Formation, north Greenland. Micropaleontology 37, 245–267 (1991).

    Article  Google Scholar 

  45. 45

    Dahl-Jensen, D. et al. Past temperatures directly from the Greenland ice sheet. Science 282, 268–271 (1998).

    Article  Google Scholar 

  46. 46

    Augustin, L. et al. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).

    Article  Google Scholar 

  47. 47

    Fausto, R. S., Ahlstrøm, A. P., Van As, D., Bøggild, C. E. & Johnsen, S. J. A new present-day temperature parameterization for Greenland. J. Glaciol. 55, 95–105 (2009).

    Article  Google Scholar 

  48. 48

    Ettema, J. et al. Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys. Res. Lett. 36, 1–5 (2009).

    Article  Google Scholar 

  49. 49

    Imbrie, J. Z. et al. in Milankovitch and Climate: Understanding the Response to Astronomical Forcing (eds Berger, A. et al.) Part 1, 269–305 (D. Reidel, 1984).

    Google Scholar 

  50. 50

    Greve, R. Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. J. Clim. 10, 901–918 (1997).

    Article  Google Scholar 

  51. 51

    Darbyshire, F. A. et al. A first detailed look at the Greenland lithosphere and upper mantle, using Rayleigh wave tomography. Geophys. J. Int. 158, 267–286 (2004).

    Article  Google Scholar 

  52. 52

    Brinkerhoff, D. & Johnson, J. A stabilized finite element method for calculating balance velocities in ice sheets. Geosci. Model Dev. 8, 1275–1283 (2015).

    Article  Google Scholar 

  53. 53

    Rogozhina, I., Martinec, Z., Hagedoorn, J. M., Thomas, M. & Fleming, K. On the long-term memory of the Greenland ice sheet. J. Geophys. Res. 116, F01011 (2011).

    Article  Google Scholar 

  54. 54

    Masri, S. F., Bekey, G. A. & Safford, F. B. A global optimization algorithm using adaptive random search. Appl. Math. Comput. 7, 353–375 (1980).

    Google Scholar 

  55. 55

    Bekey, G. A. & Masri, S. F. Random search techniques for optimization of nonlinear systems with many parameters. Math. Comput. Simul. 25, 210–213 (1983).

    Article  Google Scholar 

  56. 56

    Bueler, E., Lingle, C. S., Kallen-Brown, J. A., Covey, D. N. & Bowman, L. N. Exact solutions and verification of numerical models for isothermal ice sheets. J. Glaciol. 51, 291–306 (2005).

    Article  Google Scholar 

  57. 57

    Fausto, R. S., Ahlstrøm, A. P., van As, D. & Steffen, K. Present-day temperature standard deviation parameterization for Greenland. J. Glaciol. 57, 1181–1183 (2011).

    Article  Google Scholar 

  58. 58

    Rogozhina, I. & Rau, D. Vital role of daily temperature variability in surface mass balance parameterizations of the Greenland ice sheet. Cryosphere 8, 575–585 (2014).

    Article  Google Scholar 

  59. 59

    Wake, L. M. & Marshall, S. J. Assessment of current methods of positive degree-day calculation using in situ observations from glaciated areas. J. Glaciol. 61, 329–344 (2015).

    Article  Google Scholar 

  60. 60

    Seguinot, J. & Rogozhina, I. Daily temperature variability predetermined by thermal conditions over ice-sheet surfaces. J. Glaciol. 60, 603–605 (2014).

    Article  Google Scholar 

  61. 61

    Clason, C. C. et al. Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, southwest Greenland. Cryosphere 9, 123–138 (2015).

    Article  Google Scholar 

  62. 62

    Straneo, F. & Heimbach, P. North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature 504, 36–43 (2013).

    Article  Google Scholar 

  63. 63

    Fox Maule, C., Purucker, M. E., Olsen, N. & Mosegaard, K. Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science 309, 464–467 (2005).

    Article  Google Scholar 

  64. 64

    Shreve, R. L. Movement of water in glaciers. J. Glaciol. 11, 205–214 (1972).

    Article  Google Scholar 

  65. 65

    Flowers, G. E. & Clarke, G. K. C. Surface and bed topography of Trapridge Glacier, Yukon Territory, Canada: digital elevation models and derived hydraulic geometry. J. Glaciol. 45, 165–174 (1999).

    Article  Google Scholar 

  66. 66

    Cuffey, K. M. et al. Large Arctic temperature change at the Wisconsin-Holocene glacial transition. Science 270, 455–458 (1995).

    Article  Google Scholar 

  67. 67

    Sass, J. H., Nielsen, B. L., Wollenberg, H. A. & Munroe, R. J. Heat flow and surface radioactivity at two sites in south Greenland. J. Geophys. Res. 77, 6435–6444 (1972).

    Article  Google Scholar 

  68. 68

    Balling, N. & Brooks, C. K. in Processes at a Rifted Continental Margin (eds Brooks, C. K. & Stærmose, T.) 85–91 (Geological Institute, Univ. Copenhagen, 1991).

    Google Scholar 

  69. 69

    Oswald, G. & Gogineni, S. Recovery of subglacial water extent from Greenland radar survey data. J. Glaciol. 54, 94–106 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This study is part of the multinational research initiative IceGeoHeat. We thank C. F. Maule for sharing the map of Curie depths with us and W. Chu and R. Bell for providing us with their modelled subglacial hydrology network. We also greatly appreciate the suggestions of A. Newton, T. Gerya and J. X. Mitrovica on how to improve the manuscript. This work was partly supported by Netherlands Research Centre for Integrated Solid Earth Sciences (grants ISES-NorMar-2.6 and ISES-UU-PC-cluster), the German Research Foundation (grant PE 2167/1-1) and the Federal Ministry of Education and Research, PalMod project.

Author information

Affiliations

Authors

Contributions

I.R. developed the concept. I.R. and A.G.P. designed and performed all numerical experiments. I.R. and A.P.M.V. wrote the manuscript, with the assistance of A.G.P., B.S. and J.V.J. A.G.P. analysed the seismic tomography models provided by F.R. and I.K., prepared the map of crustal thickness, assembled the measured GF values from the continental shelf of Greenland and prepared and described the materials related to the model set-up and thermal state of the Greenland lithosphere. B.S. prepared and described the materials related to existing plume track reconstructions and contributed to the design of the Supplementary Information. J.V.J. tested the GF map using his high-resolution Greenland ice sheet model VarGlaS. M.K.K. performed the analysis of the observed gravity data. All authors contributed to discussions and interpretations of the results.

Corresponding author

Correspondence to Irina Rogozhina.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3653 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rogozhina, I., Petrunin, A., Vaughan, A. et al. Melting at the base of the Greenland ice sheet explained by Iceland hotspot history. Nature Geosci 9, 366–369 (2016). https://doi.org/10.1038/ngeo2689

Download citation

Further reading