Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup


During Neoproterozoic Snowball Earth glaciations, the oceans gained massive amounts of alkalinity, culminating in the deposition of massive cap carbonates on deglaciation. Changes in terrestrial runoff associated with both breakup of the Rodinia supercontinent and deglaciation can explain some, but not all of the requisite changes in ocean chemistry. Submarine volcanism along shallow ridges formed during supercontinent breakup results in the formation of large volumes of glassy hyaloclastite, which readily alters to palagonite. Here we estimate fluxes of calcium, magnesium, phosphorus, silica and bicarbonate associated with these shallow-ridge processes, and argue that extensive submarine volcanism during the breakup of Rodinia made an important contribution to changes in ocean chemistry during Snowball Earth glaciations. We use Monte Carlo simulations to show that widespread hyaloclastite alteration under near-global sea-ice cover could lead to Ca2+ and Mg2+ supersaturation over the course of the glaciation that is sufficient to explain the volume of cap carbonates deposited. Furthermore, our conservative estimates of phosphorus release are sufficient to explain the observed P:Fe ratios in sedimentary iron formations from this time. This large phosphorus release may have fuelled primary productivity, which in turn would have contributed to atmospheric O2 rises that followed Snowball Earth episodes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Evolution of spreading-ridge systems during the late Neoproterozoic.
Figure 2: Summary of major global volcanic events during the Tonian, Cryogenian and early Ediacaran periods, in relation to major glaciations (blue) and continental breakup events (beige).
Figure 3: Monte Carlo simulations showing estimated Ca and Mg fluxes into the ‘snowball’ ocean, and resulting thicknesses of carbonate and dolostone.
Figure 4: Monte Carlo simulations for estimated phosphorus fluxes into a typical ‘snowball’ ocean.


  1. 1

    Kirschvink, J. L. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 51–52 (Cambridge Univ. Press, 1992).

    Google Scholar 

  2. 2

    Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic Snowball Earth. Science 281, 1342–1346 (1998).

    Article  Google Scholar 

  3. 3

    Eyles, N. & Januszczak, N. ‘Zipper-rift’: a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth Sci. Rev. 65, 1–73 (2004).

    Article  Google Scholar 

  4. 4

    Donnadieu, Y., Godderis, Y., Ramstein, G., Nedelec, A. & Meert, J. A ‘Snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature 428, 303–306 (2004).

    Article  Google Scholar 

  5. 5

    Torsvik, T. H. et al. Continental break-up and collision in the Neoproterozoic and Palaeozoic—a tale of Baltica and Laurentia. Earth Sci. Rev. 40, 229–258 (1996).

    Article  Google Scholar 

  6. 6

    Macdonald, F. A. et al. Calibrating the Cryogenian. Science 327, 1241–1243 (2010).

    Article  Google Scholar 

  7. 7

    Cooper, A. F., Maas, R., Scott, J. M. & Barber, A. J. W. Dating of volcanism and sedimentation in the Skelton Group, Transantarctic Mountains: implications for the Rodinia–Gondwana transition in southern Victoria Land, Antarctica. Geol. Soc. Am. Bull. 123, 681–702 (2011).

    Article  Google Scholar 

  8. 8

    O’Brien, T. M. & van der Pluijm, B. A. Timing of Iapetus Ocean rifting from Ar geochronology of pseudotachylytes in the St. Lawrence rift system of southern Quebec. Geology 40, 443–446 (2012).

    Article  Google Scholar 

  9. 9

    Van Staal, C. R., Dewey, J. F., MacNiocaill, C. & McKerrow, W. S. The Cambrian-Silurian tectonic evolution of the northern Appalachians and British Caledonides: history of a complex, west and southwest Pacific-type segment of Iapetus. Geol. Soc. Lond. Spec. Publ. 143, 197–242 (1998).

    Article  Google Scholar 

  10. 10

    Goddéris, Y. et al. The Sturtian ‘snowball’ glaciation: fire and ice. Earth Planet. Sci. Lett. 211, 1–12 (2003).

    Article  Google Scholar 

  11. 11

    Pierrehumbert, R. T. High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature 429, 646–649 (2004).

    Article  Google Scholar 

  12. 12

    Hoffman, P. F. & Schrag, D. P. The Snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, 129–155 (2002).

    Article  Google Scholar 

  13. 13

    Halverson, G. P. & Shields-Zhou, G. Chapter 4 Chemostratigraphy and the Neoproterozoic glaciations. Geol. Soc. Lond. Mem. 36, 51–66 (2011).

    Article  Google Scholar 

  14. 14

    Fairchild, I. J. Balmy shores and icy wastes: the paradox of carbonates associated with glacial deposits in Neoproterozoic times. Sedimentol. Rev. 1, 1–16 (1993).

    Google Scholar 

  15. 15

    Higgins, J. A. & Schrag, D. P. Aftermath of a Snowball Earth. Geochem. Geophys. Geosyst. 4, 1028 (2003).

    Article  Google Scholar 

  16. 16

    Le Hir, G. et al. The Snowball Earth aftermath: exploring the limits of continental weathering processes. Earth Planet. Sci. Lett. 277, 453–463 (2009).

    Article  Google Scholar 

  17. 17

    Trindade, R. I. F., Font, E., D’Agrella-Filho, M. S., Nogueira, A. C. R. & Riccomini, C. Low-latitude and multiple geomagnetic reversals in the Neoproterozoic Puga cap carbonate, Amazon craton. Terra Nova 15, 441–446 (2003).

    Article  Google Scholar 

  18. 18

    Kennedy, M. J. & Christie-Blick, N. Condensation origin for Neoproterozoic cap carbonates during deglaciation. Geology 39, 319–322 (2011).

    Article  Google Scholar 

  19. 19

    Planavsky, N. J. et al. The evolution of the marine phosphate reservoir. Nature 467, 1088–1090 (2010).

    Article  Google Scholar 

  20. 20

    Le Hir, G., Ramstein, G., Donnadieu, Y. & Goddéris, Y. Scenario for the evolution of atmospheric p CO 2 during a Snowball Earth. Geology 36, 47–50 (2008).

    Article  Google Scholar 

  21. 21

    Storey, M., Duncan, R. A. & Tegner, C. Timing and duration of volcanism in the North Atlantic Igneous Province: implications for geodynamics and links to the Iceland hotspot. Chem. Geol. 241, 264–281 (2007).

    Article  Google Scholar 

  22. 22

    Planke, S., Symonds, P. A., Alvestad, E. & Skogseid, J. Seismic volcanostratigraphy of large-volume basaltic extrusive complexes on rifted margins. J. Geophys. Res. 105, 19335–19351 (2000).

    Article  Google Scholar 

  23. 23

    Batiza, R. & White, J. D. L. in Encyclopedia of Volcanoes (ed. Sigurdsson, H.) 361–381 (Academic, 2000).

    Google Scholar 

  24. 24

    Stroncik, N. A. & Schmincke, H. U. Palagonite—a review. Int. J. Earth Sci. 91, 680–697 (2002).

    Article  Google Scholar 

  25. 25

    Staudigel, H. & Hart, S. R. Alteration of basaltic glass: mechanisms and significance for the oceanic crust–sea water budget. Geochim. Cosmochim. Acta 47, 337–350 (1983).

    Article  Google Scholar 

  26. 26

    Brady, P. V. & Gíslason, S. R. Seafloor weathering controls on atmospheric CO2 and global climate. Geochim. Cosmochim. Acta 61, 965–973 (1987).

    Article  Google Scholar 

  27. 27

    Mottl, M. J. & Wheat, C. G. Hydrothermal circulation through mid-ocean ridge flanks: fluxes of heat and magnesium. Geochim. Cosmochim. Acta 58, 2225–2237 (1994).

    Article  Google Scholar 

  28. 28

    Jakobsson, S. P. Environmental factors controlling the palagonitization of the tephra of the Surtsey volcanic island, Iceland. Bull. Geol. Soc. Denmark 27, 91–105 (1978).

    Google Scholar 

  29. 29

    Kennedy, M. J., Christie-Blick, N. & Prave, A. R. Carbon isotopic composition of Neoproterozoic glacial carbonates as a test of paleoceanographic models for Snowball Earth phenomena. Geology 29, 1135–1138 (2001).

    Article  Google Scholar 

  30. 30

    Stern, R. J., Mukherjee, S. K., Miller, N. R., Ali, K. & Johnson, P. R. 750 Ma banded iron formation from the Arabian–Nubian Shield—Implications for understanding Neoproterozoic tectonics, volcanism, and climate change. Precambrian Res. 239, 79–94 (2013).

    Article  Google Scholar 

  31. 31

    Cox, G. M. et al. in Yukon Exploration and Geology 2012 (eds MacFarlane, K. E., Nordling, M. G. & Sack, P. J.) 19–36 (Yukon Geological Survey, 2013).

    Google Scholar 

  32. 32

    Calver, C. R., Black, L. P., Everard, J. L. & Seymour, D. B. U-Pb zircon age constraints on late Neoproterozoic glaciation in Tasmania. Geology 32, 893–896 (2004).

    Article  Google Scholar 

  33. 33

    Rooney, A. D. et al. Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian Snowball Earth. Proc. Natl Acad. Sci. USA 111, 51–56 (2014).

    Article  Google Scholar 

  34. 34

    Reid, I. & Jackson, H. R. Oceanic spreading rate and crustal thickness. Mar. Geophys. Res. 5, 165–172 (1981).

    Google Scholar 

  35. 35

    Wilson, D. S. Fastest known spreading on the Miocene Cocos–Pacific Plate boundary. Geophys. Res. Lett. 23, 3003–3006 (1996).

    Article  Google Scholar 

  36. 36

    Alt, J. C. in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. & Thomson, R. E.) 91, 85–114 (American Geophysical Union, 1995).

    Google Scholar 

  37. 37

    Berner, E. K. & Berner, R. A. Global Environment: Water, Air, and Geochemical Cycles 2nd edn (Princeton Univ. Press, 2012).

    Google Scholar 

  38. 38

    Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).

    Article  Google Scholar 

  39. 39

    Wallmann, K. et al. Silicate weathering in anoxic marine sediments. Geochim. Cosmochim. Acta 72, 2895–2918 (2008).

    Article  Google Scholar 

  40. 40

    Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999).

    Article  Google Scholar 

  41. 41

    Pokrovsky, O. Precipitation of calcium and magnesium carbonates from homogeneous supersaturated solutions. J. Cryst. Growth 186, 233–239 (1998).

    Article  Google Scholar 

  42. 42

    Compton, J. S. Degree of supersaturation and precipitation of organogenic dolomite. Geology 16, 318–321 (1988).

    Article  Google Scholar 

  43. 43

    Pokrovsky, O. S. Kinetics of CaCO3 homogeneous precipitation in seawater. Mineral. Mag. 58A, 738–739 (1994).

    Article  Google Scholar 

  44. 44

    Allen, P. A. & Etienne, J. L. Sedimentary challenge to Snowball Earth. Nature Geosci. 1, 817–825 (2008).

    Article  Google Scholar 

  45. 45

    Kaufman, A. J., Jacobsen, S. B. & Knoll, A. H. The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth Planet. Sci. Lett. 120, 409–430 (1993).

    Article  Google Scholar 

  46. 46

    Halverson, G. P., Dudás, F. Ö., Maloof, A. C. & Bowring, S. A. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr. Palaeoclimatol. Palaeoecol. 256, 103–129 (2007).

    Article  Google Scholar 

  47. 47

    Meyer, E. E., Quicksall, A. N., Landis, J. D., Link, P. K. & Bostick, B. C. Trace and rare earth elemental investigation of a Sturtian cap carbonate, Pocatello, Idaho: evidence for ocean redox conditions before and during carbonate deposition. Precambrian Res. 192–195, 89–106 (2012).

    Article  Google Scholar 

  48. 48

    Huang, J., Chu, X., Jiang, G., Feng, L. & Chang, H. Hydrothermal origin of elevated iron, manganese and redox-sensitive trace elements in the c. 635 Ma Doushantuo cap carbonate. J. Geol. Soc. 168, 805–816 (2011).

    Article  Google Scholar 

  49. 49

    Young, G. M. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history. Geosci. Front. 4, 247–261 (2013).

    Article  Google Scholar 

  50. 50

    Kendall, B., Creaser, R. A. & Selby, D. Re-Os geochronology of postglacial black shales in Australia: constraints on the timing of ‘Sturtian’ glaciation. Geology 34, 729–732 (2006).

    Article  Google Scholar 

  51. 51

    Bodiselitsch, B., Koeberl, C., Master, S. & Reimold, W. U. Estimating duration and intensity of Neoproterozoic snowball glaciations from Ir anomalies. Science 308, 239–242 (2005).

    Article  Google Scholar 

  52. 52

    Hoffman, P. F. et al. Are basal Ediacaran (635 Ma) post-glacial ‘cap dolostones’ diachronous? Earth Planet. Sci. Lett. 258, 114–131 (2007).

    Article  Google Scholar 

  53. 53

    Lenton, T. M. & Watson, A. J. Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic. Geophys. Res. Lett. 31, L05202 (2004).

    Article  Google Scholar 

  54. 54

    Horton, F. Did phosphorus derived from the weathering of large igneous provinces fertilize the Neoproterozoic ocean? Geochem. Geophys. Geosyst. 16, 1723–1738 (2015).

    Article  Google Scholar 

  55. 55

    Cox, G. M. et al. Neoproterozoic iron formation: an evaluation of its temporal, environmental and tectonic significance. Chem. Geol. 362, 232–249 (2013).

    Article  Google Scholar 

  56. 56

    Kump, L. R. & Seyfried, W. E. Jr Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet. Sci. Lett. 235, 654–662 (2005).

    Article  Google Scholar 

  57. 57

    Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran Ocean. Nature 444, 744–747 (2006).

    Article  Google Scholar 

  58. 58

    Pemstein, D., Quinn, K. M. & Martin, A. D. The Scythe statistical library: an open source C++ library for statistical computation. J. Stat. Softw. 42, 1–26 (2011).

    Article  Google Scholar 

  59. 59

    Fisher, R. V. Submarine volcaniclastic rocks. Geol. Soc. Lond. Spec. Publ. 16, 5–27 (1984).

    Article  Google Scholar 

  60. 60

    Peate, I. U., Larsen, M. & Lesher, C. The transition from sedimentation to flood volcanism in the Kangerlussuaq Basin, East Greenland: basaltic pyroclastic volcanism during initial Palaeogene continental break-up. J. Geol. Soc. 160, 759–772 (2003).

    Article  Google Scholar 

  61. 61

    Bell, B. & Butcher, H. On the emplacement of sill complexes: evidence from the Faroe–Shetland Basin. Geol. Soc. Lond. Spec. Publ. 197, 307–329 (2002).

    Article  Google Scholar 

  62. 62

    Jerram, D. A., Single, R. T., Hobbs, R. W. & Nelson, C. E. Understanding the offshore flood basalt sequence using onshore volcanic facies analogues: an example from the Faroe–Shetland basin. Geol. Mag. 146, 353–367 (2009).

    Article  Google Scholar 

  63. 63

    Walton, A. W. & Schiffman, P. Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core 1. Description and paragenesis. Geochem. Geophys. Geosyst. 4, 8709 (2009).

    Google Scholar 

  64. 64

    Morton, A. C. & Keene, J. B. DSDP Initial Reports Vol. 81, Ch. 19, 633–643 (Ocean Drilling Program, 1984).

    Google Scholar 

  65. 65

    Desprairies, A., Bonnot-Courtois, C., Jehanno, C., Vernhet, S. & Joron, J. L. DSDP Initial Reports Vol. 81, Ch. 28, 733–742 (Ocean Drilling Program, 1984).

    Google Scholar 

Download references


E.J.R. acknowledges Australian Research Council Laureate Fellowship FL1201 00050. We are grateful to R. S. J. Sparks, R. N. Taylor, C. N. Trueman, T. Lenton, I. Fairchild and G. Shields-Zhou for helpful discussions and suggestions. Supplementary Fig. 1 was illustrated by G. Hincks.

Author information




T.M.G. conceived and managed the research. T.K.H. developed and performed simulations with inputs from T.M.G., T.T., M.R.P. and E.J.R. The manuscript was written by T.M.G., with important contributions from all co-authors.

Corresponding author

Correspondence to T. M. Gernon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3944 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gernon, T., Hincks, T., Tyrrell, T. et al. Snowball Earth ocean chemistry driven by extensive ridge volcanism during Rodinia breakup. Nature Geosci 9, 242–248 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing