Selective environmental stress from sulphur emitted by continental flood basalt eruptions


Several biotic crises during the past 300 million years have been linked to episodes of continental flood basalt volcanism, and in particular to the release of massive quantities of magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous individual eruptions, each lasting years to decades. However, the environmental impact of these eruptions may have been limited by the occurrence of quiescent periods that lasted hundreds to thousands of years. Here we use a global aerosol model to quantify the sulphur-induced environmental effects of individual, decade-long flood basalt eruptions representative of the Columbia River Basalt Group, 16.5–14.5 million years ago, and the Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would recover within 50 years after an eruption ceased unless climate feedbacks were very different in deep-time climates. Acid mists and fogs could have caused immediate damage to vegetation in some regions, but acid-sensitive land and marine ecosystems were well-buffered against volcanic sulphur deposition effects even during century-long eruptions. We conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic crisis only if eruption frequencies and lava discharge rates had been high and sustained for several centuries at a time.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Global mean surface temperature change and its dependence on eruption duration and mass of SO2 emitted.
Figure 2: Annual latitudinal-mean volcanic acid deposition rates and acid mist concentrations for CFB-scale eruptions compared with standards to protect soils, vegetation and waters from the effects of acid deposition (‘critical loads’) and direct exposure to pollutants (‘critical levels’)36.


  1. 1

    Schoene, B. et al. U–Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science 347, 182–184 (2015).

    Google Scholar 

  2. 2

    Self, S., Widdowson, M., Thordarson, T. & Jay, A. E. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth Planet. Sci. Lett. 248, 518–532 (2006).

    Google Scholar 

  3. 3

    Self, S., Blake, S., Sharma, K., Widdowson, M. & Sephton, S. Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release. Science 319, 1654–1657 (2008).

    Google Scholar 

  4. 4

    Thordarson, T. & Self, S. Sulfur, chlorine and fluorine degassing and atmospheric loading by the Roza eruption, Columbia River Basalt Group, Washington, USA. J. Volcanol. Geotherm. Res. 74, 49–73 (1996).

    Google Scholar 

  5. 5

    Rampino, M. R. & Stothers, R. B. Flood Basalt volcanism during the past 250 million years. Science 241, 663–668 (1988).

    Google Scholar 

  6. 6

    Stothers, R. B. Flood basalts and extinction events. Geophys. Res. Lett. 20, 1399–1402 (1993).

    Google Scholar 

  7. 7

    Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. C. R. Geosci. 335, 113–140 (2003).

    Google Scholar 

  8. 8

    Raup, D. M. & Sepkoski, J. J. Mass extinctions in the marine fossil record. Science 215, 1501–1503 (1982).

    Google Scholar 

  9. 9

    Wignall, P. B. Large igneous provinces and mass extinctions. Earth-Sci. Rev. 53, 1–33 (2001).

    Google Scholar 

  10. 10

    Archibald, J. D. Dinosaur Extinction and the End of an Era: What the Fossils Say (Columbia Univ. Press, 1996).

    Google Scholar 

  11. 11

    Robock, A. Volcanic eruptions and climate. Rev. Geophys. 38, 191–219 (2000).

    Google Scholar 

  12. 12

    Delmelle, P. Environmental impacts of tropospheric volcanic gas plumes. Geol. Soc. Lond. Spec. Publ. 213, 381–399 (2003).

    Google Scholar 

  13. 13

    Officer, C. B., Hallam, A., Drake, C. L. & Devine, J. D. Late Cretaceous and paroxysmal Cretaceous/Tertiary extinctions. Nature 326, 143–149 (1987).

    Google Scholar 

  14. 14

    Campbell, I. H., Czamanske, G. K., Fedorenko, V. A., Hill, R. I. & Stepanov, V. Synchronism of the Siberian Traps and the Permian-Triassic boundary. Science 258, 1760–1763 (1992).

    Google Scholar 

  15. 15

    Black, B. A., Lamarque, J.-F., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T. Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 42, 67–70 (2013).

    Google Scholar 

  16. 16

    Erwin, D. H. The Permo-Triassic extinction. Nature 367, 231–236 (1994).

    Google Scholar 

  17. 17

    Erwin, D. H., Bowring, S. A. & Yugan, J. End-Permian mass extinctions: A review. Geol. Soc. Am. Spec. Pap. 356, 363–383 (2002).

    Google Scholar 

  18. 18

    Knoll, A. H., Barnbach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295–313 (2007).

    Google Scholar 

  19. 19

    D’Hondt, S., Pilson, M. E. Q., Sigurdsson, H., Hanson, A. K. & Carey, S. Surface-water acidification and extinction at the Cretaceous–Tertiary boundary. Geology 22, 983–986 (1994).

    Google Scholar 

  20. 20

    Hallam, A. & Wignall, P. B. Mass extinctions and sea-level changes. Earth-Sci. Rev. 48, 217–250 (1999).

    Google Scholar 

  21. 21

    McLean, D. M. Deccan Traps mantle degassing in the terminal Cretaceous marine extinctions. Cretaceous Res. 6, 235–259 (1985).

    Google Scholar 

  22. 22

    Pinto, J. P., Turco, R. P. & Toon, O. B. Self-limiting physical and chemical effects in volcanic eruption clouds. J. Geophys. Res. 94(D8), 11165–11174 (1989).

    Google Scholar 

  23. 23

    Bekki, S. Oxidation of volcanic SO2—A sink for stratospheric OH and H2O. Geophys. Res. Lett. 22, 913–916 (1995).

    Google Scholar 

  24. 24

    Timmreck, C. et al. Aerosol size confines climate response to volcanic super-eruptions. Geophys. Res. Lett. 37, L24705 (2010).

    Google Scholar 

  25. 25

    Schmidt, A. et al. Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate. Atmos. Chem. Phys. 12, 7321–7339 (2012).

    Google Scholar 

  26. 26

    Cosby, B. J., Hornberger, G. M., Galloway, J. N. & Wright, R. F. Modelling the effects of acid deposition: Assessment of a lumped parameter model of soil water and streamwater chemistry. Wat. Resour. Res. 21, 51–63 (1985).

    Google Scholar 

  27. 27

    Ridgwell, A. & Schmidt, D. N. Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nature Geosci. 3, 196–200 (2010).

    Google Scholar 

  28. 28

    Stothers, R. B., Wolff, J. A., Self, S. & Rampino, M. R. Basaltic fissure eruptions, plume heights, and atmospheric aerosols. Geophys. Res. Lett. 13, 725–728 (1986).

    Google Scholar 

  29. 29

    Woods, A. W. A model of the plumes above basaltic fissure eruptions. Geophys. Res. Lett. 20, 1115–1118 (1993).

    Google Scholar 

  30. 30

    Robock, A. et al. Did the Toba volcanic eruption of 74 ka B.P. produce widespread glaciation? J. Geophys. Res. 114, D10107 (2009).

    Google Scholar 

  31. 31

    Retallack, G. J. Acid trauma at the Cretaceous–Tertiary (K/T) boundary in eastern Montana. GSA Today 1–17 (May, 1996).

  32. 32

    Cosby, B. J., Ferrier, R. C., Jenkins, A. & Wright, R. F. Modelling the effects of acid deposition: Refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrol. Earth Syst. Sci. 5, 499–518 (1999).

    Google Scholar 

  33. 33

    Cape, J. N. Direct damage to vegetation caused by acid rain and polluted cloud: Definition of critical levels for forest trees. Environ. Pollut. 82, 167–180 (1993).

    Google Scholar 

  34. 34

    Fowler, D. et al. The global exposure of forests to air pollutants. Wat. Air Soil Pollut. 116, 5–32 (1999).

    Google Scholar 

  35. 35

    Umweltbundesamt Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels (Umweltbundesamt, 2004).

    Google Scholar 

  36. 36

    Howells, G. P. Acid Rain and Acid Waters (Ellis Horwood, 1990).

    Google Scholar 

  37. 37

    Stumm, W. & Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters 3rd edn (John Wiley, 1996).

    Google Scholar 

  38. 38

    Beerling, D. J., Lomax, B. H., Royer, D. L., Upchurch, G. R. & Kump, L. R. An atmospheric pCO(2) reconstruction across the Cretaceous–Tertiary boundary from leaf megafossils. Proc. Natl Acad. Sci. USA 99, 7836–7840 (2002).

    Google Scholar 

  39. 39

    Kürschner, W. M., Kvaček, Z. & Dilcher, D. L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc. Natl Acad. Sci. USA 105, 449–453 (2008).

    Google Scholar 

  40. 40

    Ganino, C. & Arndt, N. T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37, 323–326 (2009).

    Google Scholar 

  41. 41

    Dodd, S. C., Mac Niocaill, C. & Muxworthy, A. R. Long duration (4 Ma) and steady-state volcanic activity in the early Cretaceous Paraná–Etendeka Large Igneous Province: New palaeomagnetic data from Namibia. Earth Planet. Sci. Lett. 414, 16–29 (2015).

    Google Scholar 

  42. 42

    Black, B. A., Weiss, B. P., Elkins-Tanton, L. T., Veselovskiy, R. V. & Latyshev, A. Siberian Traps volcaniclastic rocks and the role of magma–water interactions. Geol. Soc. Am. Bull. 127, 1437–1452 (2015).

    Google Scholar 

  43. 43

    Schmidt, A. et al. Excess mortality in Europe following a future Laki-style Icelandic eruption. Proc. Natl Acad. Sci. USA 108, 15710–15715 (2011).

    Google Scholar 

  44. 44

    Mann, G. W. et al. Description and evaluation of GLOMAP-mode: A modal global aerosol microphysics model for the UKCA composition-climate model. Geosci. Model Dev. 3, 519–551 (2010).

    Google Scholar 

  45. 45

    Chipperfield, M. P. New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments. Q. J. R. Meteorol. Soc. 132, 1179–1203 (2006).

    Google Scholar 

  46. 46

    Schmidt, A. et al. The impact of the 1783–1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei. Atmos. Chem. Phys. 10, 6025–6041 (2010).

    Google Scholar 

  47. 47

    Stevenson, D. S. et al. Atmospheric impact of the 1783–1784 Laki eruption: Part I Chemistry modelling. Atmos. Chem. Phys. 3, 487–507 (2003).

    Google Scholar 

  48. 48

    Breider, T. J. et al. Impact of BrO on dimethylsulfide in the remote marine boundary layer. Geophys. Res. Lett. 37, L02807 (2010).

    Google Scholar 

  49. 49

    Dee, D. P. et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Google Scholar 

  50. 50

    Oman, L., Robock, A., Stenchikov, G. L. & Thordarson, T. High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophys. Res. Lett. 33, L18711 (2006).

    Google Scholar 

  51. 51

    Toohey, M., Krüger, K., Bittner, M., Timmreck, C. & Schmidt, H. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: Mechanisms and sensitivity to forcing structure. Atmos. Chem. Phys. 14, 13063–13079 (2014).

    Google Scholar 

  52. 52

    Robock, A. & Liu, Y. The volcanic signal in Goddard Institute for Space Studies three-dimensional model simulations. J. Clim. 7, 44–55 (1994).

    Google Scholar 

  53. 53

    Haywood, J. M., Jones, A., Bellouin, N. & Stephenson, D. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nature Clim. Change 3, 660–665 (2013).

    Google Scholar 

  54. 54

    Rap, A. et al. Natural aerosol direct and indirect radiative effects. Geophys. Res. Lett. 40, 3297–3301 (2013).

    Google Scholar 

  55. 55

    Edwards, J. M. & Slingo, A. Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Q. J. R. Meteorol. Soc. 122, 689–719 (1996).

    Google Scholar 

  56. 56

    Rossow, W. B. & Schiffer, R. A. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 80, 2261–2287 (1999).

    Google Scholar 

  57. 57

    Gohar, L. K., Myhre, G. & Shine, K. P. Updated radiative forcing estimates of four halocarbons. J. Geophys. Res. 109, D01107 (2004).

    Google Scholar 

  58. 58

    Stamnes, K., Tsay, S. C., Wiscombe, W. & Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27, 2502–2509 (1988).

    Google Scholar 

  59. 59

    Dudhia, A. RFM v3 Software User’s Manual (Univ. Oxford, 1997).

    Google Scholar 

  60. 60

    Blackie, D. et al. High-resolution photoabsorption cross-section measurements of SO2 at 198 K from 213 to 325 nm. J. Geophys. Res. 116, E03006 (2011).

    Google Scholar 

  61. 61

    Rothman, L. S. et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).

    Google Scholar 

  62. 62

    Forster, P. M. F. & Gregory, J. M. The climate sensitivity and its components diagnosed from Earth radiation budget data. J. Clim. 19, 39–52 (2006).

    Google Scholar 

  63. 63

    Forster, P. M. d. F. & Shine, K. P. Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett. 29, 10-11–10-14 (2002).

    Google Scholar 

  64. 64

    Forster, P. M. et al. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. 118, 1139–1150 (2013).

    Google Scholar 

  65. 65

    Cape, J. N. et al. Sulphate and ammonium in mist impair the frost hardening of red spruce seedlings. New Phytol. 118, 119–126 (1991).

    Google Scholar 

  66. 66

    Fowler, D. et al. Deposition of atmospheric pollutants on forests [and discussion]. Phil. Trans. R. Soc. Lond. B 324, 247–265 (1989).

    Google Scholar 

  67. 67

    Air Quality Guidelines for Europe (World Health Organization, 2000).

  68. 68

    Ying Cui, L. R. K., Ridgwell, A., Cui, Y., Lee, R. K. & Ridgwell, A. Spatial and Temporal Patterns of Ocean Acidification During the End-Permian Mass Extinction—An Earth System Model Evaluation (Cambridge Univ. Press, 2015).

    Google Scholar 

  69. 69

    Cao, L. et al. The role of ocean transport in the uptake of anthropogenic CO2 . Biogeosciences 6, 375–390 (2009).

    Google Scholar 

Download references


We thank A. Haywood for providing Miocene and Late Cretaceous surface albedo fields. A.S. was supported by an Academic Research Fellowship from the School of Earth and Environment, University of Leeds. P.M.F. and K.S.C. were supported by a Royal Society Wolfson Merit Award. S.S. was supported by an award from the Larsen Funds, University of California-Berkeley.

Author information




A.S. and K.S.C. devised the study. A.S. ran and analysed the model simulations and led the interpretation. A.S., T.T., S.S., M.W., R.A.S. and A. Ridgwell designed model experiments. R.A.S. ran the soil and water acidification model simulations and interpreted the results together with A.S., and D.F. advised on the critical load calculations. A. Ridgwell ran the GENIE model and interpreted the results. A.S. and P.M.F. calculated the SO2 radiative forcing and ran the energy budget model. A.Rap ran the radiative transfer code. A.S. led the writing and all authors contributed to the editing of the manuscript and approved the final version.

Corresponding author

Correspondence to Anja Schmidt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1765 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schmidt, A., Skeffington, R., Thordarson, T. et al. Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nature Geosci 9, 77–82 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing