Letter | Published:

Rock comminution as a source of hydrogen for subglacial ecosystems

Nature Geoscience volume 8, pages 851855 (2015) | Download Citation

  • An Erratum to this article was published on 27 November 2015

This article has been updated

Abstract

Substantial parts of the beds of glaciers, ice sheets and ice caps are at the pressure melting point1. The resulting water harbours diverse subglacial microbial ecosystems2,3 capable of affecting global biogeochemical cycles4,5. Such subglacial habitats may have acted as refugia during Neoproterozoic glaciations6. However, it is unclear how life in subglacial environments could be supported during glaciations lasting millions of years because energy from overridden organic carbon would become increasingly depleted7,8. Here we investigate the potential for abiogenic H2 produced during rock comminution to provide a continual source of energy to support subglacial life. We collected a range of silicate rocks representative of subglacial environments in Greenland, Canada, Norway and Antarctica and crushed them with a sledgehammer and ball mill to varying surface areas. Under an inert atmosphere in the laboratory, we added water, and measured H2 production with time. H2 was produced at 0 °C in all silicate–water experiments, probably through the reaction of water with mineral surface silica radicals formed during rock comminution. H2 production increased with increasing temperature or decreasing silicate rock grain size. Sufficient H2 was produced to support previously measured rates of methanogenesis under a Greenland glacier. We conclude that abiogenic H2 generation from glacial bedrock comminution could have supported life and biodiversity in subglacial refugia during past extended global glaciations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 29 October 2015

    In the print version of this Letter originally published, the published online date was incorrectly stated as 21 September 2015; the correct published online date is 29 October 2015. This has been corrected in all online versions of the Letter.

References

  1. 1.

    The role of subglacial water in ice-sheet mass balance. Nature Geosci. 1, 297–304 (2008).

  2. 2.

    et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512, 310–313 (2014).

  3. 3.

    , , & Molecular evidence for an active endogenous microbiome beneath glacial ice. ISME J. 7, 1402–1412 (2013).

  4. 4.

    et al. Potential methane reservoirs beneath Antarctica. Nature 488, 633–637 (2012).

  5. 5.

    et al. Antarctic ice sheet fertilises the Southern Ocean. Biogeosciences 11, 2635–2643 (2014).

  6. 6.

    , , , & Psycrophiles: From Biodiversity to Biotechnology Ch. 4 (Springer, 2008).

  7. 7.

    The Ediacaran microbiota and the survival of Snowball Earth conditions. Precambr. Res. 167, 1–15 (2008).

  8. 8.

    et al. Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources. Glob. Change Biol. 18, 3332–3345 (2012).

  9. 9.

    , , , & A microbial driver of chemical weathering in glaciated systems. Geology 41, 215–218 (2013).

  10. 10.

    & The snowball Earth hypothesis: Testing the limits of global change. Terra Nova 14, 129–155 (2002).

  11. 11.

    , , , & Chemolithotrophic primary production in a subglacial ecosystem. Appl. Environ. Microbiol. 80, 6146–6153 (2014).

  12. 12.

    et al. A serpentinite-hosted ecosystem: The lost city hydrothermal field. Science 307, 1428–1434 (2005).

  13. 13.

    & Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450–454 (1995).

  14. 14.

    et al. Radiolytic H2 in continental crust: Nuclear power for deep subsurface microbial communities. Geochem. Geophys. Geosyst. 6, Q07003 (2005).

  15. 15.

    , & H2 generation by reaction between H2O and crushed rock—an experimental study on H2 degassing from the active fault zone. J. Geophys. Res. 87, 789–795 (1982).

  16. 16.

    et al. Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity. J. Geology 91, 239–258 (1983).

  17. 17.

    , , & Physicochemical properties of crystalline silica dusts and their possible implication in various biological responses. Scand. J. Work Environ. Health 21, 9–14 (1995).

  18. 18.

    & Volatiles associated with alkaline igneous rift activity—fluid inclusions in the Ilimaussaq intrusion and the Gardar granitic complexes (South Greenland). Chem. Geol. 37, 79–93 (1982).

  19. 19.

    A theorectical model of glacial abrasion. J. Glaciol. 23, 39–50 (1979).

  20. 20.

    , , & Accelerated subglacial erosion in response to stick-slip motion. Geology 41, 159–162 (2013).

  21. 21.

    , & Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications. Glob. Planet. Change 12, 213–235 (1996).

  22. 22.

    et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nature Commun. 5, 3929 (2014).

  23. 23.

    , & Hydrological controls on microbial communities in subglacial environments. Hydrol. Process. 19, 995–998 (2005).

  24. 24.

    , & Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977).

  25. 25.

    , , , & Methanogenesis in subglacial sediments. Environ. Microbiol. Rep. 2, 685–692 (2010).

  26. 26.

    et al. Gas isotopes in ice reveal a vegetated central Greenland during ice sheet invasion. Geophys. Res. Lett. 33, L24503 (2006).

  27. 27.

    , , & Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ. Microbiol. 11, 640–656 (2009).

  28. 28.

    , & Dissolved gases in frozen basal water from the NGRIP borehole: Implications for biogeochemical processes beneath the Greenland Ice Sheet. Polar Biol. 35, 1735–1741 (2012).

  29. 29.

    & Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta 52, 2993–3003 (1988).

  30. 30.

    , , & Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc. Natl Acad. Sci. USA 102, 2555–2560 (2005).

  31. 31.

    & Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. J. Chem. Eng. Data 24, 356–360 (1979).

  32. 32.

    & Kinetics of radical formation during the mechanical activation of quartz. Langmuir 25, 2264–2270 (2009).

  33. 33.

    , , , & Rapid erosion beneath the Greenland ice sheet. Geology 40, 343–346 (2012).

  34. 34.

    et al. Evolution of drainage system morphology at a land-terminating Greenlandic outlet glacier. J. Geophys. Res. 118, 29–41 (2013).

  35. 35.

    , & Modeling the subglacial hydrology of the late Pleistocene Lake Michigan Lobe, Laurentide Ice Sheet. Geol. Soc. Am. Bull. 114, 665–674 (2002).

  36. 36.

    , & Flow-induced mixing in the GRIP basal ice deduced from the CO2 and CH4 records. Geophys. Res. Lett. 22, 41–44 (1995).

  37. 37.

    & Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Systematic Biol. 55, 539–552 (2006).

  38. 38.

    , , , & Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol. 60, 685–699 (2011).

  39. 39.

    , , & jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9, 772 (2012).

  40. 40.

    et al. Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Appl. Environ. Microbiol. 77, 4778–4787 (2011).

Download references

Acknowledgements

The authors acknowledge financial support from an E.U. INTERACT Transnational Access grant (to J.T.), NASA Exobiology and Evolutionary Biology programme (NNX10AT31G to M.L.S. and E.S.B.) and the NASA Astrobiology Institute (NNA15BB02A to E.S.B.).

Author information

Affiliations

  1. School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK

    • J. Telling
    • , N. Bone
    • , E. L. Jones
    • , M. Tranter
    • , J. L. Wadham
    •  & G. Lamarche-Gagnon
  2. Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA

    • E. S. Boyd
  3. Interface Analysis Centre, School of Physics, University of Bristol, 121 St Michael’s Hill, Bristol BS8 1TL, UK

    • J. W. MacFarlane
    •  & P. G. Martin
  4. Department of Earth Sciences, Montana State University, Bozeman, Montana 59717, USA

    • M. L. Skidmore
  5. Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221, USA

    • T. L. Hamilton
  6. Natural Resources Laboratory, Carl Zeiss Microscopy Ltd, 509 Coldhams Lane, Cambridge CB1 3JS, UK

    • E. Hill
  7. Norwegian Water Resources & Energy Directorate, Hydrology Department, Glacier, Snow and Ice Section, N-0301 Oslo, Norway

    • M. Jackson
  8. British Antarctic Survey, Madingley Road, High Cross, Cambridge CB3 0ET, UK

    • D. A. Hodgson

Authors

  1. Search for J. Telling in:

  2. Search for E. S. Boyd in:

  3. Search for N. Bone in:

  4. Search for E. L. Jones in:

  5. Search for M. Tranter in:

  6. Search for J. W. MacFarlane in:

  7. Search for P. G. Martin in:

  8. Search for J. L. Wadham in:

  9. Search for G. Lamarche-Gagnon in:

  10. Search for M. L. Skidmore in:

  11. Search for T. L. Hamilton in:

  12. Search for E. Hill in:

  13. Search for M. Jackson in:

  14. Search for D. A. Hodgson in:

Contributions

J.T. conceived and designed the project. E.S.B. oversaw the microbiological analyses. N.B., E.L.J., G.L.-G., P.G.M. and J.W.M. performed the experiments and geochemical analyses. T.L.H. performed the microbiological experiments and analyses. M.L.S., M.J., D.A.H., E.H. and J.L.W. contributed materials. E.H. assisted on fieldwork. J.T., E.S.B., N.B., M.T., J.L.W. and M.L.S. co-authored the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to J. Telling.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ngeo2533

Further reading