Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A role for chance in marine recovery from the end-Cretaceous extinction

Abstract

Two contrasting ecological models have been proposed for recovery from mass extinctions. The first posits that evolutionary recoveries are structured by trophic interactions alone, resulting in a predictable recovery of species richness and abundance earlier in lower trophic levels1. The second, the contingent model, holds that both chance and ecology are key to the structure of recoveries2, thus precluding inherent predictability. Documented recovery patterns from the Cretaceous–Palaeogene mass extinction could support either model1,3,4,5, as most previous studies have lacked the high-resolution records needed to discriminate between the scenarios. Here we use high-resolution marine sediment records to reconstruct pelagic community structure during the Palaeogene recovery in three sites in the South Atlantic and North Pacific Ocean. We document heterogeneity in the timing of recovery between sites from the alternative community structures characteristic in early pelagic ecosystems. We show that the evolution of species richness and abundance is decoupled between two well-represented groups of phytoplankton and zooplankton, as well as between taxa within a single trophic level. Our results favour the contingent recovery model. We suggest that ecological and environmental mechanisms may account for any similarities in community structure among sites and for the eventual transition from early recovery to late recovery communities, whereas chance may explain intersite differences in the timing and recovery path.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Early ecological recovery in the North Pacific.
Figure 2: Early ecological recovery in the eastern South Atlantic.
Figure 3: Cross-site comparison of calcareous and foraminiferal flux and % foraminiferal-sized grains.

Similar content being viewed by others

References

  1. Sole, R. V., Montoya, J. M. & Erwin, D. H. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics. Phil. Trans. R. Soc. Lond. B 357, 697–707 (2002).

    Article  Google Scholar 

  2. Yedid, G., Ofria, C. A. & Lenski, R. E. Selective press extinctions, but not random pulse extinction cause delayed ecological recovery in communities of digital organisms. Am. Nat. 173, 139–154 (2009).

    Article  Google Scholar 

  3. Coxall, H. K., D’Hondt, S. & Zachos, J. C. Pelagic evolution and environmental recovery after the Cretaceous–Paleogene mass extinction. Geology 34, 297–300 (2006).

    Article  Google Scholar 

  4. Johnson, K. R. & Ellis, B. A tropical rainforest in Colorado 1.4 million years after the Cretaceous–Tertiary boundary. Science 296, 2379–2383 (2002).

    Article  Google Scholar 

  5. Wilf, P., Labandeira, C. C., Johnson, K. R. & Ellis, B. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science 313, 1112–1115 (2006).

    Article  Google Scholar 

  6. Zachos, J. C., Arthur, M. A. & Dean, W. E. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337, 61–64 (1989).

    Article  Google Scholar 

  7. D’Hondt, S. Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 295–317 (2005).

    Article  Google Scholar 

  8. Fuqua, L. M., Bralower, T. J., Arthur, M. A. & Patzkowsky, M. E. Evolution of calcareous nannoplankton and the recovery of marine food webs after the Cretaceous–Paleocene mass extinction. Palaios 23, 185–194 (2008).

    Article  Google Scholar 

  9. Sole, R. V., Saldana, J., Montoya, J. M. & Erwin, D. H. Simple model of recovery dynamics after mass extinction. J. Theor. Biol. 267, 193–200 (2010).

    Article  Google Scholar 

  10. Jiang, S. J., Bralower, T. J., Patzkowsky, M. E., Kump, L. R. & Schueth, J. D. Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary. Nature Geosci. 3, 280–285 (2010).

    Article  Google Scholar 

  11. D’Hondt, S. & Keller, G. Some patterns of planktic foraminiferal assemblage turnover at the Cretaceous Tertiary boundary. Mar. Micropaleontol. 17, 77–118 (1991).

    Article  Google Scholar 

  12. Keller, G. & Pardo, A. Disaster opportunists Guembelitrinidae: Index for environmental catastrophes. Mar. Micropaleontol. 53, 83–116 (2004).

    Article  Google Scholar 

  13. Olsson, R. K. in Atlas of Paleocene Planktonic Foraminifera (eds Olsson, R. K., Hemleben, C., Berggren, W. A. & Huber, B. T.) (SmithsonianInstitution, 1999).

    Book  Google Scholar 

  14. Bown, P. Selective calcareous nannoplankton survivorship at the Cretaceous–Tertiary boundary. Geology 33, 653–656 (2005).

    Article  Google Scholar 

  15. Alegret, L. & Thomas, E. Food supply to the seafloor in the Pacific Ocean after the Cretaceous/Paleogene boundary event. Mar. Micropaleontol. 73, 105–116 (2009).

    Article  Google Scholar 

  16. Zachos, J. C. & Arthur, M. A. Paleoceanography of the Cretaceous/Tertiary Boundary event: Inferences from stable isotopic and other data. Paleoceanography 1, 5–26 (1986).

    Article  Google Scholar 

  17. Bralower, T. et al. Grain size of Cretaceous–Paleogene boundary sediments from Chicxulub to the open ocean: Implications for interpretation of the mass extinction event. Geology 38, 199–202 (2010).

    Article  Google Scholar 

  18. Broecker, W. S. & Clark, E. CaCO3 size distribution: A paleocarbonate ion proxy? Paleoceanography 14, 596–604 (1999).

    Article  Google Scholar 

  19. Beer, C. J., Schiebel, R. & Wilson, P. A. Technical Note: On methodologies for determining the size-normalised weight of planktic foraminifera. Biogeosciences 7, 2193–2198 (2010).

    Article  Google Scholar 

  20. Thierstein, H. R. Terminal Cretaceous plankton extinctions: A critical assessment. Spec. Pap. Geol. Soc. Am. 190, 385–399 (1982).

    Google Scholar 

  21. Dymond, J., Suess, E. & Lyle, M. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography 7, 163–181 (1992).

    Article  Google Scholar 

  22. Hull, P. M. & Norris, R. D. Diverse patterns of ocean export productivity change across the Cretaceous–Paleogene boundary: New insights from biogenic barium. Paleoceanography 26, 1–10 (2011).

    Article  Google Scholar 

  23. Sepulveda, J., Wendler, J. E., Summons, R. E. & Hinrichs, K. U. Rapid resurgence of marine productivity after the Cretaceous–Paleogene mass extinction. Science 326, 129–132 (2009).

    Article  Google Scholar 

  24. Hollis, C. J., Rodgers, K. A. & Parker, R. J. Siliceous plankton bloom in the earliest Tertiary of Marlborough, New-Zealand. Geology 23, 835–838 (1995).

    Article  Google Scholar 

  25. Lichtman, E. in Evolution of Primary Producers in the Sea (eds Falkowski, P. G. & Knoll, A. H.) 351–375 (Elsevier, 2007).

    Google Scholar 

  26. Alegret, L. & Thomas, E. Deep-sea environments across the Cretaceous/Paleogene boundary in the eastern South Atlantic Ocean (ODP leg 208, Walvis Ridge). Mar. Micropaleontol. 64, 1–17 (2007).

    Article  Google Scholar 

  27. Gerstel, J., Thunell, R. & Ehrlich, R. Danian faunal succession—planktonic foraminiferal response to a changing marine-environment. Geology 15, 665–668 (1987).

    Article  Google Scholar 

  28. D’Hondt, S., Donaghay, P., Zachos, J. C., Luttenberg, D. & Lindinger, M. Organic carbon fluxes and ecological recovery from the Cretaceous–Tertiary mass extinction. Science 282, 276–279 (1998).

    Article  Google Scholar 

  29. Westerhold, T. et al. Astronomical calibration of the Paleocene time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 257, 377–403 (2008).

    Article  Google Scholar 

  30. Zachos, J. C. et al. Site 1262, Proc. ODP, Init. Repts., 208 (Ocean Drilling Program, 2004).

    Google Scholar 

Download references

Acknowledgements

This work was funded by NASA Exobiology grant NNX07AK62G (to R.D.N. and T.J.B.) and supported by the Ocean Drilling Program (special thanks to P. Rumford, C. Broyles and J. Firth). Thanks to A. Bhattacharya at Harvard for helium data, discussions and manuscript comments; S. Jiang at Jinan University for nannoplankton data; L. Eccles, T. Lindemann and G. Smith at Penn State for size structure analyses; D. Andreasen at UC Santa Cruz for stable isotope analyses; S. Kirtland, T. Westerhold and U. Röhl for X-ray fluorescence core scanning at the Bremen Repository; J. C. Zachos at UC Santa Cruz for suggesting the shell-weight analyses; M. D. Ohman and the Norris lab (Scripps Inst. of Oceanography), the Briggs lab (Yale), and M. L. Spreitzer, T. Manousaki and S. Fan (Universität Konstanz) for comments and suggestions improving the clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

P.M.H., R.D.N. and T.J.B. conceived the study; all authors generated, compiled and analysed the data, and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Pincelli M. Hull.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7082 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hull, P., Norris, R., Bralower, T. et al. A role for chance in marine recovery from the end-Cretaceous extinction. Nature Geosci 4, 856–860 (2011). https://doi.org/10.1038/ngeo1302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1302

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene