Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Columbia River flood basalts from a centralized crustal magmatic system

Abstract

The Columbia River Basalt Group in the northwestern United States1, comprising about 230,000 cubic kilometres of rock, exhibits unusual patterns in lava distribution, geochemistry and its apparent relationship to regional tectonics. Consequently, there is little consensus on the origin of its magmas2,3,4,5,6,7,8,9,10,11,12. Here, we examine the isotopic ratios of Sr, Nd, Pb and Os and trace-element abundances in Columbia River basalts. The results suggest that most of the lava was produced when magma derived from a mantle plume assimilated continental crust in a central magma chamber system located at the boundary between the North American craton and the accreted terranes of Idaho and Oregon. Other, related basalts are the product of mixing between the mantle plume and different types of regional upper mantle. Magma was then transported over a wide region by an extensive network of dykes, a process that has been identified in other flood basalt provinces as well13. Interactions of the plume with surrounding upper mantle, and of mantle-derived magmas with regional crust, provide a relatively simple6,7,9,14,15 model to explain the more unusual features of the main-phase Columbia River Basalts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stratigraphy and map of main-phase Columbia River basalts, based on ref. 2.
Figure 2: Sr–Nd–Pb isotope relations among main-phase CRBG lavas and Pacific mid-ocean-ridge basalt.
Figure 3: Relations between 87Sr/86Sr and incompatible trace elements among main-phase CRBG lavas.
Figure 4

Similar content being viewed by others

References

  1. Hooper, P. R. The Columbia River flood basalt province: Current status. Geophys. Monograph 100, 1–27 (1997).

    Google Scholar 

  2. Camp, V. E. & Ross, M. E. Mantle dynamics and genesis of mafic magmatism in the intermontane Pacific Northwest. J. Geophys. Res. 109 (2004) (doi:10.1029/2003JB002838).

  3. Carlson, R. W., Lugmair, G. W. & MacDougall, J. D. Columbia River volcanism: the question of mantle heterogeneity or crustal contamination. Geochim. Cosmochim. Acta 45, 2483–2499 (1981).

    Article  Google Scholar 

  4. Carlson, R. W. Isotopic constraints on Columbia River flood basalt genesis and the nature of the subcontinental lithospheric mantle. Geochim. Cosmochim. Acta 48, 2357–2372 (1984).

    Article  Google Scholar 

  5. Brandon, A. D. & Goles, G. G. A Miocene subcontinental plume in the Pacific Northwest: Geochemical evidence. Earth Planet. Sci. Lett. 88, 273–283 (1988).

    Article  Google Scholar 

  6. Geist, D. & Richards, M. A. Origin of the Columbia Plateau and Snake River Plain: Deflection of the Yellowstone plume. Geology 21, 789–792 (1993).

    Article  Google Scholar 

  7. Camp, V. E. Mid-Miocene propagation of the Yellowstone mantle plume head beneath the Columbia River basalt source region. Geology 23, 435–438 (1995).

    Article  Google Scholar 

  8. Hales, T. C., Abt, D. L., Humpreys, E. D. & Roering, J. J. A lithospheric instability origin for Columbia River flood basalts and Wallowa Mountains uplift in northeast Oregon. Nature 438, 842–845 (2005).

    Article  Google Scholar 

  9. Hooper, P. R. & Hawkesworth, C. J. Isotopic and geochemical constraints on the origin and evolution of the Columbia River basalt. J. Petrol. 34, 1203–1246 (1993).

    Article  Google Scholar 

  10. Takahashi, E., Nakajima, K. & Wright, T. L. Origin of the Columbia River basalts: Melting model of a heterogeneous plume head. Earth Planet. Sci. Lett. 162, 63–80 (1998).

    Article  Google Scholar 

  11. Brandon, A. D., Hooper, P. R., Goles, G. G. & Lambert, R. St. J. Evaluating crustal contamination in continental basalts: The isotopic composition of the Picture Gorge Basalt of the Columbia River Basalt Group. Contrib. Mineral. Petrol. 114, 452–464 (1993).

    Article  Google Scholar 

  12. Hooper, P. R., Camp, V. E., Reidel, S. P. & Ross, M. E. The origin of the Columbia River flood basalt province: Plume versus nonplume models. Geol. Soc. Am. Special Paper 430, 635–668 (2007).

    Google Scholar 

  13. Ernst, R. E. & Buchan, K. L. Giant radiating dyke swarms: Their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. Geophys. Monograph 100, 297–333 (1997).

    Google Scholar 

  14. Jordan, B. T., Grunder, A. L., Duncan, R. A. & Deino, A. L. Geochronology of age-progressive volcanism of the Oregon high lava plains: Implications for the plume interpretation of Yellowstone. J. Geophys. Res. 109 (2004) (doi:10.1029/2003JB002776).

  15. Christiansen, R. L., Foulger, G. R. & Evans, J. R. Upper-mantle origin of the Yellowstone hotspot. Geol. Soc. Am. Bull. 114, 1245–1256 (2002).

    Article  Google Scholar 

  16. Brueseke, M. E., Heizler, M. T., Hart, W. K. & Mertzman, S. A. Distribution and geochronology of Oregon Plateau (U.S.A.) flood basalt volcanism: The Steens Basalt revisited. J. Volcanol. Geotherm. Res. 161, 187–214 (2007).

    Article  Google Scholar 

  17. Reidel, S. P. et al. The Grande Ronde Basalt, Columbia River Basalt Group; Stratigraphic descriptions and correlations in Washington, Oregon, and Idaho. Geol. Soc. Am. Special Paper 239, 21–53 (1989).

    Article  Google Scholar 

  18. Dodson, A., Kennedy, B. M. & DePaolo, D. J. Helium and neon isotopes in the Imnaha Basalt, Columbia River basalt group: Evidence for a Yellowstone plume source. Earth Planet. Sci. Lett. 150, 443–451 (1997).

    Article  Google Scholar 

  19. Chesley, J. T. & Ruiz, J. Crust-mantle interaction in large igneous provinces: Implications from the Re–Os isotope systematics of the Columbia River flood basalts. Earth Planet. Sci. Lett. 154, 1–11 (1998).

    Article  Google Scholar 

  20. Class, C. & Goldstein, S. L. Evolution of helium isotopes in the Earth’s mantle. Nature 436, 1107–1112 (2005).

    Article  Google Scholar 

  21. Brandon, A. D. & Goles, G. G. Assessing subcontinental lithospheric mantle sources for basalts: Neogene volcanism in the Pacific Northwest, USA as a test case. Contrib. Mineral. Petrol. 121, 364–379 (1995).

    Article  Google Scholar 

  22. Caprarelli, G. & Reidel, S. P. A clinopyroxene-basalt geothermobarometry perspective of Columbia Plateau (NW-USA) Miocene magmatism. Terra Nova 17, 265–277 (2005).

    Article  Google Scholar 

  23. Durand, S. R. & Sen, G. Pre-eruption history of the Grande Ronde Formation lavas, Columbia River Basalt Group, American Northwest: Evidence from phenocrysts. Geology 32, 293–296 (2004).

    Article  Google Scholar 

  24. Ramos, F. C., Wolff, J. A. & Tollstrup, D. L. Sr isotope disequilibrium in Columbia River flood basalts: Evidence for rapid shallow-level open-system processes. Geology 33, 457–460 (2005).

    Article  Google Scholar 

  25. Shirey, S. B. & Walker, R. J. 187Re–187Os isotopes in geochemistry and cosmochemistry. Ann. Rev. Earth Planet. Sci. 26, 423–500 (1998).

    Article  Google Scholar 

  26. Widom, E., Hoernle, K. A., Shirey, S. B. & Schmincke, H.-U. Os isotope systematics in the Canary Islands and Madeira: Lithospheric contamination and mantle plume signatures. J. Petrol. 40, 279–296 (1999).

    Article  Google Scholar 

  27. Leeman, W. P., Oldow, J. S. & Hart, W. K. Lithosphere-scale thrusting in the western U.S. Cordillera as constrained by Sr and Nd isotopic transitions in Neogene volcanic rocks. Geology 20, 63–66 (1992).

    Article  Google Scholar 

  28. Glen, J. M. G. & Ponce, D. A. Large-scale fractures related to the inception of the Yellowstone hotspot. Geology 30, 647–650 (2002).

    Article  Google Scholar 

  29. Stracke, A., Bizimis, M. & Salters, V. J. M. Recycling oceanic crust: Quantitative constraints. Geochem. Geophys. Geosys. 4 (2003) (doi:10.1029/2001GC000223).

  30. Fleck, R. J. Neodymium, strontium, and trace-element evidence of crustal anatexis and magma mixing in the Idaho batholith. Geol. Soc. Amer. Mem. 174, 359–373 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. R. Hooper and J. A. Johnson for discussion and permission to analyse CRBG samples, archived at WSU, collected by them and their associates; R. M. Conrey, D. M. Cornelius and C. M. Knaack for assistance in the laboratory; B. Hanan for sharing unpublished data; and S. P. Reidel, V. E. Camp and R. M. Conrey for discussion. This study was supported by National Science Foundation grants to J.A.W. and F.C.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Wolff.

Supplementary information

Supplementary Information

Supplementary experimental data and supplementary table S1 (PDF 184 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolff, J., Ramos, F., Hart, G. et al. Columbia River flood basalts from a centralized crustal magmatic system. Nature Geosci 1, 177–180 (2008). https://doi.org/10.1038/ngeo124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing