Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Towards forecasting volcanic eruptions using seismic noise

Abstract

Volcanic eruptions are preceded by increased magma pressures, leading to the inflation of volcanic edifices1. Ground deformation resulting from volcano inflation can be revealed by various techniques such as spaceborne radar interferometry2, or by strain- and tiltmeters3. Monitoring this process in real time can provide us with useful information to forecast volcanic eruptions. In some cases, however, volcano inflation can be localized at depth with no measurable effects at the surface, and despite considerable effort4,5 monitoring changes in volcanic interiors has proven to be difficult. Here we use the properties of ambient seismic noise recorded over an 18-month interval to show that changes in the interior of the Piton de la Fournaise volcano can be monitored continuously by measuring very small relative seismic-velocity perturbations, of the order of 0.05%. Decreases in seismic velocity a few weeks before eruptions suggest pre-eruptive inflation of the volcanic edifice, probably due to increased magma pressure. The ability to record the inflation of volcanic edifices in this fashion should improve our ability to forecast eruptions and their intensity and potential environmental impact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurements of relative time perturbations (Δτ/τ).
Figure 2: Evolution of relative velocity changes on Piton de la Fournaise over 18 months.
Figure 3: Regionalization of the velocity-variation anomalies.

Similar content being viewed by others

References

  1. Patanè, D., De Gori, P., Chiarabba, C. & Bonaccorso, A. Magma ascent and the pressurization of Mount Etna’s volcanic system. Science 299, 2061–2063 (2003).

    Article  Google Scholar 

  2. Massonnet, D., Briole, P. & Arnaud, A. Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 375, 567–570 (2001).

    Article  Google Scholar 

  3. Peltier, A., Ferrazzini, V., Staudacher, T. & Bachèlery, P. Imaging the dynamics of dyke propagation prior to the 2000–2003 flank eruptions at Piton de La Fournaise, Reunion Island. Geophys. Res. Lett. 32, L22302 (2005).

    Article  Google Scholar 

  4. Ratdomopurbo, A. & Poupinet, G. Monitoring a temporal change of seismic velocity in a volcano: Application to the 1992 eruption of Mt. Merapi (Indonesia). Geophys. Res. Lett. 22, 775–778 (1995).

    Article  Google Scholar 

  5. Snieder, R. & Hagerty, M. Monitoring change in volcanic interiors using coda wave interferometry: Application to Arenal Volcano, Costa Rica. Geophys. Res. Lett. 31, L09608 (2004).

    Article  Google Scholar 

  6. Battaglia, J., Ferrazzini, V., Staudacher, T., Aki, K. & Cheminée, J.-L. Pre-eruptive migration of earthquakes at the Piton de la Fournaise volcano (Réunion Island). Geophys. J. Int. 161, 549–558 (2005).

    Article  Google Scholar 

  7. Chouet, B. Long-period volcano seismicity: Its source and use in eruption forecasting. Nature 380, 309–316 (1996).

    Article  Google Scholar 

  8. Chouet, B. Volcano seismology. Pure Appl. Geophys. 160, 739–788 (2003).

    Article  Google Scholar 

  9. Poupinet, G., Ellsworth, W. L. & Frechet, J. Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California. J. Geophys. Res. 89, 5719–5731 (1984).

    Article  Google Scholar 

  10. Wegler, U., Lühr, B.-G., Snieder, R. & Ratdomopurbo, A. Increase of shear wave velocity before the 1998 eruption of Merapi volcano (Indonesia). Geophys. Res. Lett. 33, L09303 (2006).

    Article  Google Scholar 

  11. Grêt, A., Snieder, R., Aster, R. C. & Kyle, P. R. Monitoring rapid temporal change in a volcano with coda wave interferometry. Geophys. Res. Lett. 32, L06304 (2005).

    Article  Google Scholar 

  12. Sabra, K. G., Roux, P., Gerstoft, P., Kuperman, W. A. & Fehler, M. C. Extracting coherent coda arrivals from cross-correlations of long period seismic waves during the Mount St. Helens 2004 eruption. Geophys. Res. Lett. 33, L06313 (2006).

    Article  Google Scholar 

  13. Patanè, D., Barberi, G., Cocina, O., De Gori, P. & Chiarabba, C. Time-resolved seismic tomography detects magma intrusions at Mount Etna. Science 313, 821–823 (2006).

    Article  Google Scholar 

  14. Weaver, R. L. & Lobkis, O. I. Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies. Phys. Rev. Lett. 87, 134301–134304 (2001).

    Article  Google Scholar 

  15. Campillo, M. & Paul, A. Long-range correlations in the diffuse seismic coda. Science 299, 547–549 (2003).

    Article  Google Scholar 

  16. Shapiro, N. M. & Campillo, M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett. 31, L07614 (2004).

    Article  Google Scholar 

  17. Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A. & Fehler, M. C. Extracting timedomain Green’s function estimates from ambient seismic noise. Geophys. Res. Lett. 32, L03310 (2005).

    Article  Google Scholar 

  18. Campillo, M. Phase and correlation in random seismic fields and the reconstruction of the Green function. Pure Appl. Geophys. 163, 475–502 (2006).

    Article  Google Scholar 

  19. Shapiro, N., Campillo, M., Stehly, L. & Ritzwoller, M. H. High-resolution surface-wave tomography from ambient seismic noise. Science 307, 1615–1618 (2005).

    Article  Google Scholar 

  20. Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A. & Fehler, M. C. Surface wave tomography from microseisms in Southern California. Geophys. Res. Lett. 32, L14311 (2005).

    Article  Google Scholar 

  21. Brenguier, F., Shapiro, N. M., Campillo, M., Nercessian, A. & Ferrazzini, V. 3D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations. Geophys. Res. Lett. 34, L02305 (2007).

    Article  Google Scholar 

  22. Stehly, L., Campillo, M. & Shapiro, N. M. Travel time measurements from noise correlation: Stability and detection of instrumental errors. Geophys. J. Int. 171, 223–230 (2007).

    Article  Google Scholar 

  23. Sens-Schönfelder, C. & Wegler, U. Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys. Res. Lett. 33, L21302 (2006).

    Article  Google Scholar 

  24. Stieltjes, L. & Moutou, P. A statistical and probabilistic study of the historic activity of the Piton de la Fournaise, Réunion Island, Indian Ocean. J. Volcanol. Geotherm. Res. 36, 67–86 (1989).

    Article  Google Scholar 

  25. Nercessian, A., Hirn, A., Lépine, J.-C. & Sapin, M. Internal structure of Piton de la Fournaise volcano from seismic wave propagation and earthquake distribution. J. Volcanol. Geotherm. Res. 70, 123–143 (1996).

    Article  Google Scholar 

  26. Peltier, A. et al. Subtle precursors of volcanic eruptions at Piton de la Fournaise detected by extensometers. Geophys. Res. Lett. 33, L06315 (2006).

    Google Scholar 

  27. Pride, S. R. Hydrogeophysics Ch. 8, 253–290 (Water Science and Technology Library, Springer, Berlin, 2005).

    Book  Google Scholar 

  28. Tait, S., Jaupart, C. & Vergniolle, S. Pressure, gas content and eruption periodicity of a shallow crystallising magma chamber. Earth Planet. Sci. Lett. 92, 107–123 (1989).

    Article  Google Scholar 

  29. McLeod, P. & Tait, S. The growth of dykes from magma chambers. J. Volcanol. Geotherm. Res. 92, 231–245 (1999).

    Article  Google Scholar 

  30. Voight, B. et al. Unprecedented pressure increase in deep magma reservoir triggered by lava-dome collapse. Geophys. Res. Lett. 33, L03312 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

All the data used in this work were collected by the seismological network of the Observatoire Volcanologique du Piton de la Fournaise. We are grateful to the Observatory staff. We thank L. Stehly, P. Gouédard, L. de Barros, E. Larose, P. Roux and C. Sens-Schönfelder for helpful discussions. We are grateful to A. Peltier and Meteo France for providing us with extensometer and meteorological data respectively. We thank F. Renard, I. Manighetti and G. Poupinet for constructive comments concerning the manuscript. This work was supported by ANR (France) under contracts 05-CATT-010-01 (PRECORSIS) and ANR-06-CEXC-005 (COHERSIS).

Author information

Authors and Affiliations

Authors

Contributions

F.B., N.M.S., M.C. and Z.D. carried out the data analysis. M.C. was also the project manager. Z.D. also carried out field work. V.F. and A.N. were responsible for preliminary tests and data collection. O.C. carried out the computer code programming.

Corresponding author

Correspondence to Florent Brenguier.

Supplementary information

Supplementary Information

Supplementary figures S1-S5 (PDF 5468 kb)

Supplementary Information

Supplementary video (AVI 8726 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenguier, F., Shapiro, N., Campillo, M. et al. Towards forecasting volcanic eruptions using seismic noise. Nature Geosci 1, 126–130 (2008). https://doi.org/10.1038/ngeo104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing