Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

p38α suppresses normal and cancer cell proliferation by antagonizing the JNK–c-Jun pathway

Abstract

The mitogen-activated protein kinase (MAPK) p38α controls inflammatory responses and cell proliferation. Using mice carrying conditional Mapk14 (also known as p38α) alleles, we investigated its function in postnatal development and tumorigenesis. When we specifically deleted Mapk14 in the mouse embryo, fetuses developed to term but died shortly after birth, probably owing to lung dysfunction. Fetal hematopoietic cells and embryonic fibroblasts deficient in p38α showed increased proliferation resulting from sustained activation of the c-Jun N-terminal kinase (JNK)–c-Jun pathway. Notably, in chemical-induced liver cancer development, mice with liver-specific deletion of Mapk14 showed enhanced hepatocyte proliferation and tumor development that correlated with upregulation of the JNK–c-Jun pathway. Furthermore, inactivation of JNK or c-Jun suppressed the increased proliferation of Mapk14-deficient hepatocytes and tumor cells. These results demonstrate a new mechanism whereby p38α negatively regulates cell proliferation by antagonizing the JNK–c-Jun pathway in multiple cell types and in liver cancer development.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Pups with embryo-specific deletion of p38α (Mapk14Δ/Δ) develop to term.
Figure 2: Lung dysfunction and infiltration of hematopoietic cells.
Figure 3: Mapk14Δ/Δ newborns show increased numbers of erythroblasts and granulocytes.
Figure 4: Increased c-Jun/JNK activity in Mapk14Δ/Δ fetal liver cells.
Figure 5: Increased c-Jun/JNK activity contributes to the proliferative advantage of Mapk14Δ/Δ erythroblasts.
Figure 6: Enhanced proliferation of Mapk14Δ/Δ MEFs is dependent on augmented c-Jun/JNK activity.
Figure 7: p38α suppresses liver tumor development by antagonizing the JNK–c-Jun pathway.
Figure 8: Schematic model for p38α-dependent regulation of cell proliferation through the JNK–c-Jun pathway.

References

  1. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  Google Scholar 

  2. Kumar, S., Boehm, J. & Lee, J.C. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat. Rev. Drug Discov. 2, 717–726 (2003).

    Article  CAS  Google Scholar 

  3. Bulavin, D.V. & Fornace, A.J. Jr. p38 MAP kinase's emerging role as a tumor suppressor. Adv. Cancer Res. 92, 95–118 (2004).

    Article  CAS  Google Scholar 

  4. Lavoie, J.N., L'Allemain, G., Brunet, A., Muller, R. & Pouyssegur, J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem. 271, 20608–20616 (1996).

    Article  CAS  Google Scholar 

  5. Bulavin, D.V., Kovalsky, O., Hollander, M.C. & Fornace, A.J. Jr. Loss of oncogenic H-ras-induced cell cycle arrest and p38 mitogen-activated protein kinase activation by disruption of Gadd45a. Mol. Cell. Biol. 23, 3859–3871 (2003).

    Article  CAS  Google Scholar 

  6. Wang, W. et al. Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol. Cell. Biol. 22, 3389–3403 (2002).

    Article  Google Scholar 

  7. Brancho, D. et al. Mechanism of p38 MAP kinase activation in vivo. Genes Dev. 17, 1969–1978 (2003).

    Article  CAS  Google Scholar 

  8. Bulavin, D.V. et al. Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat. Genet. 36, 343–350 (2004).

    Article  CAS  Google Scholar 

  9. Sun, P. et al. PRAK Is Essential for ras-Induced Senescence and Tumor Suppression. Cell 128, 295–308 (2007).

    Article  CAS  Google Scholar 

  10. Mudgett, J.S. et al. Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc. Natl. Acad. Sci. USA 97, 10454–10459 (2000).

    Article  CAS  Google Scholar 

  11. Adams, R.H. et al. Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol. Cell 6, 109–116 (2000).

    Article  CAS  Google Scholar 

  12. Tamura, K. et al. Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell 102, 221–231 (2000).

    Article  CAS  Google Scholar 

  13. Allen, M. et al. Deficiency of the stress kinase p38alpha results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J. Exp. Med. 191, 859–870 (2000).

    Article  CAS  Google Scholar 

  14. Engel, F.B. et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 19, 1175–1187 (2005).

    Article  CAS  Google Scholar 

  15. Ma, W. et al. Leukocyte-specific adaptor protein Grap2 interacts with hematopoietic progenitor kinase 1 (HPK1) to activate JNK signaling pathway in T lymphocytes. Oncogene 20, 1703–1714 (2001).

    Article  CAS  Google Scholar 

  16. Borsello, T. et al. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat. Med. 9, 1180–1186 (2003).

    Article  CAS  Google Scholar 

  17. Maeda, S., Kamata, H., Luo, J.L., Leffert, H. & Karin, M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977–990 (2005).

    Article  CAS  Google Scholar 

  18. Eferl, R. et al. Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell 112, 181–192 (2003).

    Article  CAS  Google Scholar 

  19. Behrens, A., Sibilia, M. & Wagner, E.F. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat. Genet. 21, 326–329 (1999).

    Article  CAS  Google Scholar 

  20. Ihle, J.N. The challenges of translating knockout phenotypes into gene function. Cell 102, 131–134 (2000).

    Article  CAS  Google Scholar 

  21. Maekawa, T. et al. Mouse ATF-2 null mutants display features of a severe type of meconium aspiration syndrome. J. Biol. Chem. 274, 17813–17819 (1999).

    Article  CAS  Google Scholar 

  22. Perdiguero, E. et al. Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation. EMBO J. 26, 1245–1256 (2007).

    Article  CAS  Google Scholar 

  23. Bakiri, L., Lallemand, D., Bossy-Wetzel, E. & Yaniv, M. Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression. EMBO J. 19, 2056–2068 (2000).

    Article  CAS  Google Scholar 

  24. Wada, T. et al. MKK7 couples stress signalling to G2/M cell-cycle progression and cellular senescence. Nat. Cell Biol. 6, 215–226 (2004).

    Article  CAS  Google Scholar 

  25. Hochedlinger, K., Wagner, E.F. & Sabapathy, K. Differential effects of JNK1 and JNK2 on signal specific induction of apoptosis. Oncogene 21, 2441–2445 (2002).

    Article  CAS  Google Scholar 

  26. Stepniak, E. et al. c-Jun/AP-1 controls liver regeneration by repressing p53/p21 and p38 MAPK activity. Genes Dev. 20, 2306–2314 (2006).

    Article  CAS  Google Scholar 

  27. Schreiber, M. et al. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev. 13, 607–619 (1999).

    Article  CAS  Google Scholar 

  28. Sabapathy, K. et al. Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol. Cell 15, 713–725 (2004).

    Article  CAS  Google Scholar 

  29. Jaeschke, A. et al. JNK2 is a positive regulator of the cJun transcription factor. Mol. Cell 23, 899–911 (2006).

    Article  CAS  Google Scholar 

  30. Lizundia, R. et al. c-Jun NH2-terminal kinase/c-Jun signaling promotes survival and metastasis of B lymphocytes transformed by Theileria. Cancer Res. 66, 6105–6110 (2006).

    Article  CAS  Google Scholar 

  31. Khatlani, T.S. et al. c-Jun N-terminal kinase is activated in non-small-cell lung cancer and promotes neoplastic transformation in human bronchial epithelial cells. Oncogene advance online publication 23 October 2006 (doi: 10.1038/sj.onc.1210050).

    Article  Google Scholar 

  32. Schwabe, R.F. et al. c-Jun-N-terminal kinase drives cyclin D1 expression and proliferation during liver regeneration. Hepatology 37, 824–832 (2003).

    Article  CAS  Google Scholar 

  33. Iyoda, K. et al. Involvement of the p38 mitogen-activated protein kinase cascade in hepatocellular carcinoma. Cancer 97, 3017–3026 (2003).

    Article  CAS  Google Scholar 

  34. Aguirre-Ghiso, J.A., Ossowski, L. & Rosenbaum, S.K. Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res. 64, 7336–7345 (2004).

    Article  CAS  Google Scholar 

  35. Puri, P.L. et al. Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev. 14, 574–584 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sakurai, T., Maeda, S., Chang, L. & Karin, M. Loss of hepatic NF-kappa B activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc. Natl. Acad. Sci. USA 103, 10544–10551 (2006).

    Article  CAS  Google Scholar 

  37. Papa, S. et al. Gadd45 beta mediates the NF-kappa B suppression of JNK signalling by targeting MKK7/JNKK2. Nat. Cell Biol. 6, 146–153 (2004).

    Article  CAS  Google Scholar 

  38. Kamata, H. et al. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649–661 (2005).

    Article  CAS  Google Scholar 

  39. Karin, M., Lawrence, T. & Nizet, V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124, 823–835 (2006).

    Article  CAS  Google Scholar 

  40. Kellendonk, C., Opherk, C., Anlag, K., Schutz, G. & Tronche, F. Hepatocyte-specific expression of Cre recombinase. Genesis 26, 151–153 (2000).

    Article  CAS  Google Scholar 

  41. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Article  CAS  Google Scholar 

  42. von Lindern, M. et al. Leukemic transformation of normal murine erythroid progenitors: v- and c-ErbB act through signaling pathways activated by the EpoR and c-Kit in stress erythropoiesis. Oncogene 20, 3651–3664 (2001).

    Article  CAS  Google Scholar 

  43. Kiefer, F. et al. HPK1, a hematopoietic protein kinase activating the SAPK/JNK pathway. EMBO J. 15, 7013–7025 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Jiang, M. McFarland and L. Pantages-Torok at Boehringer Ingelheim for providing Mapk14f/f mice. We are grateful to F. Kiefer (Max Planck Institute for Molecular Biomedicine) for HPK1 antibodies and C. Bonny (Xigen) for the D-JNKI1 peptide sample. We thank H. Tkadletz for help with the illustrations; C. Cobaleda for help on the colony-forming assay; W. Breitwieser for qRT-PCR primers for phosphatases and D. Barlow, P. Munoz Canoves, R. Eferl, M. Sibilia, R. Ricci and the Wagner laboratory for critical reading and discussion of the manuscript. The Research Institute of Molecular Pathology is funded by Boehringer Ingelheim. L.H. is supported by a European Molecular Biology Organization (EMBO) long-term fellowship and a Marie Curie individual fellowship. L.B. was supported by an EMBO long-term fellowship.

Author information

Authors and Affiliations

Authors

Contributions

L.H. and E.F.W. designed the experiments. L.H. performed most of the experiments; L.B. performed the MEF culture and analysis; A.M. and H.B. designed and performed the erythroblast culture and analysis; N.S. and C.H. performed the microarray experiment and analysis and L.K., V.K. and H.S. performed histological staining and analysis. L.H., L.B. and E.F.W. wrote the manuscript.

Corresponding author

Correspondence to Erwin F Wagner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Characterization of p38αΔ/Δ newborn lungs. (PDF 315 kb)

Supplementary Fig. 2

Cytokine expression in p38αΔ/Δ fetal livers. (PDF 260 kb)

Supplementary Fig. 3

Liver cancer development in mice with liver-specific deletion of p38α. (PDF 386 kb)

Supplementary Fig. 4

JNK activities in MEFs and expression levels of phosphatases. (PDF 284 kb)

Supplementary Table 1

Genes with altered expression levels in p38αΔ/Δ fetal liver samples. (PDF 123 kb)

Supplementary Table 2

Primers for qRT-PCR. (PDF 43 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hui, L., Bakiri, L., Mairhorfer, A. et al. p38α suppresses normal and cancer cell proliferation by antagonizing the JNK–c-Jun pathway. Nat Genet 39, 741–749 (2007). https://doi.org/10.1038/ng2033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng2033

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing