Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tetracycline-regulatable factors with distinct dimerization domains allow reversible growth inhibition by p16

Abstract

Continuous regulation is required to maintain a given cell state1,2 or to allow it to change in response to the environment3,4. Studies of the mechanisms underlying such regulation have often been hindered by the inability to control gene expression at will. Among the inducible systems available for regulating gene expression in eukaryotes5,7,8, the tetracycline (tet) regulatable system has distinct advantages9,10,11. It is highly specific, non-toxic and non-eukaryotic, and consequently does not have pleiotropic effects on host cell genes. Previously this system also had drawbacks, as it did not extinguish gene expression completely, precluding the study of toxic or growth-inhibitory gene products. We report here the development of a facile reversible tetracycline-inducible retroviral system (designated RetroTet-ART) in which activators and repressors together are expressed in cells. Gene expression can now be actively repressed in the absence of tet and induced in the presence of tet, as we have engineered distinct dimerization domains that allow co-expression of homodimeric tet-regulated transactivators and transrepressors in the same cells, without the formation of non-functional heterodimers. Using this system, we show that growth arrest by the cell cycle inhibitor p16 is reversible and dependent on its continuous expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TheRetroTet-ARTinduciblesystem.
Figure 2: Analysis of the dimerization potential of rtTAB and tTRG.
Figure 3: FACSandnorthernanalysisoftheRetroTet-ARTsystem.
Figure 4: Properties of the RetroTet-ART system.
Figure 5: Inducible expression of p16.

Similar content being viewed by others

References

  1. Blau, H.M. & Baltimore, D. Differentiation requires continuous regulation. J. Cell. Biol. 112, 781– 783 (1991).

    Article  CAS  Google Scholar 

  2. Blau, H.M. Differentiation requires continuous active control. Annu. Rev. Biochem. 61, 1213–1230 ( 1992).

    Article  CAS  Google Scholar 

  3. McKay, R. Stem cells in the central nervous system. Science 276 , 66–71 (1997).

    Article  CAS  Google Scholar 

  4. Dupin, E., Ziller, C. & Le Douarin, N.M. The avian embryo as a model in developmental studies: chimeras and in vitro clonal analysis. Curr. Top. Dev. Biol. 36, 1–35 (1998 ).

    CAS  PubMed  Google Scholar 

  5. No, D., Yao, T.P. & Evans, R.M. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl Acad. Sci. USA 93, 3346–3351 (1996).

    Article  CAS  Google Scholar 

  6. Rivera, V.M. et al. A humanized system for pharmacologic control of gene expression. Nature Med. 2, 1028–1032 (1996).

    Article  CAS  Google Scholar 

  7. Wang, Y., O'Malley, B.W. Jr, Tsai, S.Y. & O'Malley, B.W. A regulatory system for use in gene transfer. Proc. Natl Acad. Sci. USA 91, 8180– 8184 (1994).

    Article  CAS  Google Scholar 

  8. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  Google Scholar 

  9. Kringstein, A.M., Rossi, F.M.V., Hofmann, A. & Blau, H.M. Graded transcriptional response to different concentrations of a single transactivator. Proc. Natl Acad. Sci. USA 95, 13670– 13675 (1998).

    Article  CAS  Google Scholar 

  10. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766– 1769 (1995).

    Article  CAS  Google Scholar 

  11. Bohl, D., Naffakh, N. & Heard, J.M. Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nature Med. 3, 299–305 ( 1997).

    Article  CAS  Google Scholar 

  12. Moosmann, P., Georgiev, O., Le Douarin, B., Bourquin, J.P. & Schaffner, W. Transcriptional repression by RING finger protein TIF1 β that interacts with the KRAB repressor domain of KOX1. Nucleic Acids Res. 24, 4859– 4867 (1996).

    Article  CAS  Google Scholar 

  13. Deuschle, U., Meyer, W.K. & Thiesen, H.J. Tetracycline-reversible silencing of eukaryotic promoters. Mol. Cell. Biol. 15, 1907– 1914 (1995).

    Article  CAS  Google Scholar 

  14. Hinrichs, W. et al. Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 264, 418 –420 (1994).

    Article  CAS  Google Scholar 

  15. Kisker, C., Hinrichs, W., Tovar, K., Hillen, W. & Saenger, W. The complex formed between Tet repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance. J. Mol. Biol. 247, 260–280 ( 1995).

    Article  CAS  Google Scholar 

  16. Zhao, J. & Aoki, T. Nucleotide sequence analysis of the class G tetracycline resistance determinant from Vibrio anguillarum. Microbiol. Immunol. 36, 1051–1060 (1992).

    Article  CAS  Google Scholar 

  17. Hillen, W. & Berens, C. Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu. Rev. Microbiol. 48, 345–369 ( 1994).

    Article  CAS  Google Scholar 

  18. Nakauchi, H. et al. Molecular cloning of Lyt-2, a membrane glycoprotein marking a subset of mouse T lymphocytes: molecular homology to its human counterpart, Leu- 2/T8, and to immunoglobulin variable regions. Proc. Natl Acad. Sci. USA 82, 5126–5130 ( 1985).

    Article  CAS  Google Scholar 

  19. Sherr, C.J. Cancer cell cycles. Science 274, 1672– 1677 (1996).

    Article  CAS  Google Scholar 

  20. Poulos, N.E., Farmer, A.A., Chan, K.W. & Stanbridge, E.J. Design of a novel bicistronic expression vector with demonstration of a p16INK4-induced G(1)-S block(1). Cancer Res. 56, 1719– 1723 (1996).

    CAS  PubMed  Google Scholar 

  21. Elledge, S.J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 ( 1996).

    Article  CAS  Google Scholar 

  22. Brockes, J.P. Amphibian limb regeneration: rebuilding a complex structure. Science 276, 81–87 ( 1997).

    Article  CAS  Google Scholar 

  23. Sah, D.W., Ray, J. & Gage, F.H. Bipotent progenitor cell lines from the human CNS. Nature Biotechnol . 15, 574–580 ( 1997).

    Article  CAS  Google Scholar 

  24. Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).

    Article  CAS  Google Scholar 

  25. Galbraith, D.W., Anderson, M.T. & Herzenberg, L.A. Flowcytometric analysis and sorting of cells based on GFP accumulation. Meth. Cell. Biol. (in press).

  26. Hofmann, A., Nolan, G.P. & Blau, H.M. Rapid retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc. Natl Acad. Sci. USA 93, 5185–5190 ( 1996).

    Article  CAS  Google Scholar 

  27. Riviere, I., Brose, K. & Mulligan, R.C. Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells. Proc. Natl Acad. Sci. USA 92, 6733–6737 (1995).

    Article  CAS  Google Scholar 

  28. Springer, M.L. & Blau, H.M. High-efficiency retroviral infection of primary myoblasts. Somat. Cell. Mol. Genet. 23, 203–209 ( 1997).

    Article  CAS  Google Scholar 

  29. Pear, W.S., Nolan, G.P., Scott, M.L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl Acad. Sci. USA 90, 8392– 8396 (1993).

    Article  CAS  Google Scholar 

  30. Spicher, A., Etter, A., Bernard, V., Tobler, H. & Muller, F. Extremely stable transcripts may compensate for the elimination of the gene fert-1 from all Ascaris lumbricoides somatic cells. Dev. Biol. 164, 72– 86 (1994).

    Article  CAS  Google Scholar 

  31. Yu, S.F. et al. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc. Natl Acad. Sci. USA 83, 3194–3198 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Nolan, K. Cimprich, P. Jackson and M. Springer for helpful critique. We are grateful to T. Aoki, C.J. Sherr, G. Nolan, M. Anderson and U. Deuschle for providing cDNAs. We thank A. Aslanian and E. Sanjines for technical assistance. This work was supported by postdoctoral fellowships from the Human Frontiers in Science Program (LT 623/96) to F.M.V.R., from the Swiss National Science Foundation (823A-46704) to A.S., by a summer undergraduate research fellowship from the Howard Hughes Medical Institute to A.M.K. and grants from the NIH (AG09521, CA59717 and HD18179) to H.M.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen M. Blau..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, F., Guicherit, O., Spicher, A. et al. Tetracycline-regulatable factors with distinct dimerization domains allow reversible growth inhibition by p16. Nat Genet 20, 389–393 (1998). https://doi.org/10.1038/3871

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing