Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions

Abstract

Cancer predisposition in hereditary non-polyposis colon cancer (HNPCC) is caused by defects in DNA mismatch repair1 (MMR). Mismatch recognition is attributed to two heterodimeric protein complexes: MutSα (refs 2, 3, 4, 5), a dimer of MutS homologues MSH2 and MSH6; and MutSβ (refs 2,7), a dimer of MSH2 and MSH3. These complexes have specific and redundant mismatch recognition capacity8,9,10. Whereas MSH2 deficiency ablates the activity of both dimers, causing strong cancer predisposition in mice11,12,13 and men14,15,16, loss of MSH3 or MSH6 (also known as GTBP) function causes a partial MMR defect. This may explain the rarity of MSH6 and absence of MSH3 germline mutations in HNPCC families17,18. To test this, we have inactivated the mouse genes Msh3 (formerly Rep3 ) and Msh6 (formerly Gtmbp). Msh6-deficient mice were prone to cancer; most animals developed lymphomas or epithelial tumours originating from the skin and uterus but only rarely from the intestine. Msh3 deficiency did not cause cancer predisposition, but in an Msh6 -deficient background, loss of Msh3 accelerated intestinal tumorigenesis. Lymphomagenesis was not affected. Furthermore, mismatch-directed anti-recombination and sensitivity to methylating agents required Msh2 and Msh6, but not Msh3. Thus, loss of MMR functions specific to Msh2/Msh6 is sufficient for lymphoma development in mice, whereas predisposition to intestinal cancer requires loss of function of both Msh2/Msh6 and Msh2/Msh3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic inactivation of the mouse genes Msh3 and Msh6.
Figure 2: Mismatch-binding activity in Msh mutant ES cells.
Figure 3: Survival of Msh mutant mice.
Figure 4: Toxicity of MNNG in Msh mutant ES cells.

Similar content being viewed by others

References

  1. Kolodner, R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 10, 1433–1442 ( 1996).

    Article  CAS  Google Scholar 

  2. Marsischky, G.T., Filosi, N., Kane, M.F. & Kolodner, R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10, 407– 420 (1996).

    Article  CAS  Google Scholar 

  3. Drummond, J.T., Li, G.-M., Longley, M.J. & Modrich, P. Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells. Science 268, 1909–1912 ( 1995).

    Article  CAS  Google Scholar 

  4. Palombo, F. et al. GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 268, 1912 –1914 (1995).

    Article  CAS  Google Scholar 

  5. Iaccarino, I. et al. MSH6, a Saccharomyces cerevisiae protein that binds to mismatches as a heterodimer with MSH2. Curr. Biol. 6, 484–486 (1996).

    Article  CAS  Google Scholar 

  6. Drummond, J.T., Genschel, J., Wolf, E. & Modrich, P. DHFR/ MSH3 amplification in metotrexate-resistant cells alters the hMutSα/hMutSβ ratio and reduces the efficiency of base-base mismatch repair. Proc. Natl Acad. Sci. USA 94, 10144– 10149 (1997).

    Article  CAS  Google Scholar 

  7. Marra, G. et al. Mismatch repair deficiency associated with overexpression of the MSH3 gene. Proc. Natl Acad. Sci. USA 95, 8568–8573 (1998).

    Article  CAS  Google Scholar 

  8. Umar, A. et al. Functional overlap in mismatch repair by human MSH3 and MSH6. Genetics 148, 1637– 1646 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Genschel, J., Littman, S.J., Drummond, J.T. & Modrich, P. Isolation of MutSβ from human cells and comparison of the mismatch repair specificities of MutSβ and MutSα. J. Biol. Chem. 273, 19895–19901 (1998).

    Article  CAS  Google Scholar 

  10. Risinger, J.I. et al. Mutation of MSH3 in endometrial cancer and evidence for its functional role in hetroduplex repair. Nature Genet. 14, 102–105 (1996).

    Article  CAS  Google Scholar 

  11. De Wind, N., Dekker, M., Berns, A., Radman, M. & te Riele, H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82, 321– 330 (1995).

    Article  CAS  Google Scholar 

  12. Reitmair, A.H. et al. Spontaneous intestinal carcinomas and skin neoplasms in Msh2-deficient mice. Cancer Res. 56, 3842–3849 (1996).

    CAS  PubMed  Google Scholar 

  13. De Wind, N., Dekker, M., Van Rossum, A., Van der Valk, M. & te Riele, H. Mouse models for hereditary nonpolyposis colorectal cancer. Cancer Res. 58, 248– 255 (1998).

    CAS  PubMed  Google Scholar 

  14. Fishel, R. et al. The human mutator homolog MSH2 and its association with hereditary non-polyposis colon cancer. Cell 75 , 1027–1038 (1993).

    Article  CAS  Google Scholar 

  15. Leach, F.S. et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75, 1215– 1225 (1993).

    Article  CAS  Google Scholar 

  16. Parsons, R. et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75, 1227– 1236 (1993).

    Article  CAS  Google Scholar 

  17. Akiyama, Y. et al. Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res. 57, 3920–3923 (1997).

    CAS  Google Scholar 

  18. Miyaki, M. et al. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nature Genet. 17, 271–272 (1997).

    Article  CAS  Google Scholar 

  19. te Riele, H., Robanus Maandag, E. & Berns, A. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl Acad. Sci. USA 89, 5128– 5132 (1992).

    Article  CAS  Google Scholar 

  20. Rayssiguier, C., Thaler, D.S. & Radman, M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342, 396– 401 (1989).

    Article  CAS  Google Scholar 

  21. Selva, E.M., New, L., Crouse, G.F. & Lahue, R.S. Mismatch correction acts as a barrier to homologous recombination in Saccharomyces cerevisiae . Genetics 139, 1175– 1188 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Umar, A. et al. Correction of hypermutability, N-methyl-N'-nitro- N-nitrosoguanidine resistance, and defective DNA mismatch repair by introducing chromosome 2 into human tumor cells with mutations in MSH2 and MSH6. Cancer Res. 57, 3949– 3955 (1997).

    CAS  PubMed  Google Scholar 

  23. Malkhosyan, S., McCarty, A., Sawai, H. & Perucho, M. Differences in the spectrum of spontaneous mutations in the hprt gene between tumor cells of the microsatellite mutator phenotype. Mutat. Res. 316, 249–259 (1996).

    Article  CAS  Google Scholar 

  24. Ohzeki, S., Tachibana, A., Tatsumi, K. & Kato, T. Spectra of spontaneous mutations at the hprt locus in colorectal carcinoma cell lines defective in mismatch repair. Carcinogenesis 18, 1127–1133 (1997).

    Article  CAS  Google Scholar 

  25. Edelmann, W. et al. Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell 91, 467– 477 (1997).

    Article  CAS  Google Scholar 

  26. Stephenson, C. & Karran, P. Selective binding to DNA base pair mismatches by proteins from human cells. J. Biol. Chem. 264, 21177–21182 ( 1989).

    CAS  PubMed  Google Scholar 

  27. Dolan, M.E., Moschel, R. & Pegg, A.E. Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. Proc. Natl Acad. Sci. USA 87, 5368–5372 (1990).

    Article  CAS  Google Scholar 

  28. Schilling, L.J. & Farnham, P.J. Transcriptional regulation of the dihydrofolate reductase/rep-3 locus. Crit. Rev. Eukaryot. Gene Expr. 4, 19– 53 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. van Veen and R. Bobeldijk for blastocyst injections; F. van der Ahé, N. Bosnie, L. Rijswijk and A. Zwerver for animal care; J. Bulthuis, C. de Goeij and D. Hoogervorst for the preparation of histological material; J.-H. Dannenberg for performing western-blot analysis; G. Crouse for providing Msh3 antibodies; A. Moschel for providing O 6 -benzylguanine; J. Jiricny for support; and C. Brouwers, J.-H. Dannenberg and S. de Vries for their comments on the manuscript. This work was supported by grant NKI 95-958 from the Dutch Cancer Society to H.t.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hein te Riele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wind, N., Dekker, M., Claij, N. et al. HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat Genet 23, 359–362 (1999). https://doi.org/10.1038/15544

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15544

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing