Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Meeting Report
  • Published:

Defining epigenetic states through chromatin and RNA

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Ahktar, A. & Cavelli, G. The epigenome network of excellence. PLoS Biol. 3, e177 (2005).

    Article  Google Scholar 

  2. Wysocka, J. et al. WDR5 associaties with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859–872 (2005).

    Article  CAS  Google Scholar 

  3. Xiao, T. et al. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev. 17, 654–663 (2003).

    Article  CAS  Google Scholar 

  4. Henikoff, S., Furuyama, T. & Ahmad, K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet. 20, 320–326 (2004).

    Article  CAS  Google Scholar 

  5. Wolffe, A.P. Centromeric chromatin. Histone deviants. Curr. Biol. 5, 452–454 (1995).

    Article  CAS  Google Scholar 

  6. Herr, A.J., Jensen, M.B., Dalmay, T. & Baulcombe, D.C. RNA polymerase IV directs silencing of endogenous DNA. Science 308, 118–120 (2005).

    Article  CAS  Google Scholar 

  7. Onodera, Y. et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120, 613–622 (2005).

    Article  CAS  Google Scholar 

  8. Kanno, T. et al. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat. Genet. 37, 761–765 (2005).

    Article  CAS  Google Scholar 

  9. Pontier, D. et al. Reinforcement of silencing at transposon and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev. (in the press).

  10. Davis, E. et al. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr. Biol. 15, 743–749 (2005).

    Article  CAS  Google Scholar 

  11. Ishii, K., Arib, G., Lin, C., Van Houwe, G. & Laemmli, U.K. Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109, 551–562 (2002).

    Article  CAS  Google Scholar 

  12. Casolari, J.M., Brown, C.R., Drubin, D.A., Rando, O.J. & Silver, P.A. Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev. 19, 1188–1198 (2005).

    Article  CAS  Google Scholar 

  13. Greiner, D., Bonaldi, T., Ekeland, R., Roemer, E. & Imhof, A. Identification of a specific inhibitor of histone methyltransferases of the SUV39 family. Nat. Chem. Biol. 1, 143–145 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schübeler, D., Elgin, S. Defining epigenetic states through chromatin and RNA. Nat Genet 37, 917–918 (2005). https://doi.org/10.1038/ng0905-917

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0905-917

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing