Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A gene defect that causes conduction system disease and dilated cardiomyopathy maps to chromosome 1p1–1q1

Abstract

Longitudinal evaluation of a seven generation kindred with an inherited conduction system defect and dilated cardiomyopathy demonstrated autosomal dominant transmission of a progressive disorder that both perturbs atrioventricular conduction and depresses cardiac contractility. To elucidate the molecular genetic basis for this disorder, a genome–wide linkage analysis was performed. Polymorphic loci near the centromere of chromosome 1 demonstrated linkage to the disease locus (maximum multipoint lod score = 13.2 in the interval between D1S305 and D1S176). Based on the disease phenotype and map location we speculate that gap junction protein connexin 40 is a candidate for mutations that result in conduction system disease and dilated cardiomyopathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wynne, J. & Braunwald, E. The cardiomyopathies and myocarditides: toxic, chemical, and physical damage to the heart. In Heart Disease (ed. Braunwald, E.) 1394–1450 (Saunders, Philadelphia, 1992).

    Google Scholar 

  2. Codd, M.B., Sugrue, D.D., Gersh, B.J. & Melton, L.J. III. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy: a population-based study in Olmsted County, Minnesota, 1975–1984. Circulation 80, 564–572 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Manolio, T.A. et al. Prevalence and etiology of idiopathy dilated cardiomyopathy (Summary of a National Heart, Lung, and Blood Institute Workshop). Am. J. Cardiol. 69, 1458–1466 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Michels, V.V. et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. New Engl. J. Med. 326, 77–82 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Berko, B.A. & Swift, M. X-linked dilated cardiomyopathy. New Engl. J. Med. 316, 1186–1181 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Muntoni, F. et al. Deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. New Engl. J. Med. 329, 921–925.

    Article  CAS  Google Scholar 

  7. Michels, V.V. et al. Dystrophin analysis in idiopathic dilated cardiomyopathy. J. med. Genet. 30, 955–957 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Channer, K.S., Channer, J.L., Campbell, M.J. & Rees, J.R. Cardiomyopathy in the Kearns-Sayre syndrome. Br. Heart J. 59, 486–490 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Graber, H.L. et al. Evolution of hereditary cardiac conduction and muscle disorder: a study involving a family with six generations affected. Circulation 74, 21–35 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Voss, E.G. et al. Familial dilated cardiomyopathy. Am. J. Cardiol. 54, 456–457 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Lynch, H.T. et al. Hereditary progressive atrioventricular conduction defect. A new syndrome? J.A.M.A. 225, 1465–1470 (1973).

    Article  CAS  PubMed  Google Scholar 

  12. Mestroni, L. et al. Clinical and pathologic study of familial dilated cardiomyopathy. Am. J. Cardiol. 65, 1449–1453 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Seldin, M.F., Prins, J.-B., Rodrigues, N.R., Todd, J.A. & Meisler, M.H. Mouse chromosome 3. Mamm. Genome 4, S47–S57 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Watkins, H. et al. A disease locus for familial hypertrophic cardiomyopathy maps to chromosome 1q3. Nature Genet. 3, 333–336 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Carrier, L. et al. Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11. Nature Genet. 4, 311–314 1993.

    Article  CAS  PubMed  Google Scholar 

  16. Watkins, H. et al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. New Engl. J. Med. 326, 1108–1114 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Thierfeider, L. et al. A familial hypertrophic cardiomyopathy locus maps to chromosome 15q2. Proc. natn. Acad. Sci. U.S.A. 90, 6270–6274 (1993).

    Article  Google Scholar 

  18. Calquist, J.F., Menlove, R.L., Murray, M.B., O'Connell, J.B. & Anderson, J.L. HLA Class II (DR and DQ) antigen associations in idiopathic dilated cardiomyopathy.Validation study and meta-analysis of published HLA association studies. Circulation 83, 515–527 (1991).

    Article  Google Scholar 

  19. Limas, C. et al. T-cell receptor gene polymorphisms in familial cardiomyopathy: Correlation with anti-β-receptor autoantibodies. Am. Heart J. 124, 1258–1263 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. NIH-CEPH Collaborative mapping group. Science 258, 67–86 (1992).

  21. Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature 359, 794–801.

    Article  CAS  PubMed  Google Scholar 

  22. Buetow, K.H. et al. Integrated genome wide maps constructed using the CEPH reference panel. Nature Genet. 6, 391–393 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Engelstein, M. et al. A PCR-based linkage map of human chromosome 1. Genomics 15, 251–258 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Irwin, M., Cox, N. & Kong, A. Sequential imputation for multilocus linkage analysis. Genetic Epidemiology 10, 483–488 (1993).

    Article  PubMed  Google Scholar 

  25. Beyer, E.C., Paul, D.L. & Goodenough, D.A. Connexin family of gap junction proteins. J. membrane Biol. 116, 187–194 (1990).

    Article  CAS  Google Scholar 

  26. Bennet, M.V.L. et al. Gap junctions: New tools, new answers, new questions. Neuron 6, 305–320 (1991).

    Article  Google Scholar 

  27. Willecke, K. et al. Six genes of the human connexin gene family coding for gap junction proteins are assigned to four different human chromosomes. Eur. J. Cell Biol. 53, 275–280 (1990).

    CAS  PubMed  Google Scholar 

  28. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. natn. Acad. Sci. U.S.A. 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

  29. Haefliger, J.-A. et al. Four novel members of the connexin family of gap junction proteins. J. biol. Chem. 267, 2057–2064 (1992).

    CAS  PubMed  Google Scholar 

  30. Kanter, H.L., Saffitz, J.E. & Beyer, E.C. Cardiac myocytes express multiple gap junction proteins. Circ. Res. 70, 438–444 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Kanter, H.L., Laing, J.G., Beau, S.L., Beyer, E.C. & Saffitz, J.E. Distinct patterns of connexin expression in canine purkinje fibers and ventricular muscle. Circ. Res. 72, 1124–1131 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Peters, N.S., Green, C.R., Poole-Wilson, P.A. & Severs, N.J. Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts. Circulation 88, 864–875 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Reed, K.E. et al. Molecular cloning and functional expression of human connexin37, an endothelial cell gap junction protein. J. clin. Invest. 91, 997–1004 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Surawicz, B. et al. Task Force 1: standardization of terminology and interpretation. Am. J. Cardiol. 41, 130–145 (1978).

    Article  CAS  PubMed  Google Scholar 

  35. Feigenbaum, H. Echocardiography. in Heart Disease (ed. Braunwald, E.) 64–115 (Saunders, Philadelphia,1992).

  36. Boehnke, M. Allele frequency estimation from data on relatives. Am. J. hum. Genet. 48, 22–25 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kass, S., MacRae, C., Graber, H. et al. A gene defect that causes conduction system disease and dilated cardiomyopathy maps to chromosome 1p1–1q1. Nat Genet 7, 546–551 (1994). https://doi.org/10.1038/ng0894-546

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0894-546

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing